
15-122: Principles of Imperative Computation, Spring 2024

Written Homework 8

Due on Gradescope: Monday 11th March, 2024 by 9pm

Name:

Andrew ID:

Section:

This written homework covers amortized analysis, hash tables, and generics.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• Kami, Adobe Acrobat Online, or DocHub, some web-based PDF editors that work
from anywhere.

• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Please do not add, remove or reorder pages.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 Total

Points: 2.5 7.5 5 15

Score:

https://www.gradescope.com/courses/697481
https://www.kamiapp.com/
https://www.adobe.com/acrobat/online.html
https://dochub.com/
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://www.gradescope.com/courses/697481

15-122 Written Homework 8 Page 1 of 9

1. Amortized Analysis Revisited

Consider a special binary counter represented as n bits: bn−1bn−2 . . . b1b0. For this
special counter, the cost of flipping the ith bit is 2i tokens. For example, b0 costs 1
token to flip, b1 costs 2 tokens to flip, b2 costs 4 tokens to flip, etc. We wish to analyze
the cost of performing k = 2n increments of this n-bit counter. (Note that n is not a
constant.)

Observe that if we begin with our n-bit counter containing all 0s, and we increment k
times, where k = 2n, the final value stored in the counter will again be 0.

1.11pt The worst case for a single increment of the counter is when every bit is set to 1.
The increment then causes every bit to flip, the cost of which is

1 + 2 + 22 + 23 + . . .+ 2n−1

Find a closed form in terms of n for the formula above. Using this fact, explain
in one or two sentences why this cost is O(k) — again recall that k = 2n.

Closed form:

The cost of a single increment is O(k) because

1.21.5pts Now, we will use amortized analysis to show that although the worst case for a
single increment is O(k), the amortized cost of a single increment is asymptoti-
cally less than this. Remember, k = 2n. Run some experiments for small values
of n and see if you can find a pattern.

Over the course of k increments, how many to-
kens in total does it cost to flip the ith bit the nec-
essary number of times?
Based on your answer to the previous part, what
is the total cost in tokens of performing k incre-
ments? (In other words, what is the total cost
of flipping each of the n bits through k incre-
ments?) Write your answer as a function of k
only. (Hint: what is n as a function of k?)
Based on your answer above, what is the amortized cost of a single increment as
a function of k only?

O() amortized

© Carnegie Mellon University 2024

15-122 Written Homework 8 Page 2 of 9

2. Hash Sets: Data Structure Invariants

A hash set is a hash table where keys and entries coincide: it is a convenient data
structure to implement sets whose elements are these keys/entries. The type hset
defines hash sets similarly to separate-chaining hash tables. The code below checks
that a given hash set is valid.

// typedef _________ elem; // type of elements -- client defined
typedef struct chain_node chain;
struct chain_node {
elem data;
chain* next;

};

struct hset_header {
int size; // number of elements stored in hash set
int capacity; // maximum number of chains in hash set
chain*[] table;

};
typedef struct hset_header hset;

bool is_array_expected_length(chain*[] table, int length) {
//@assert \length(table) == length;
return true; }

bool is_hset(hset* H) {
return H != NULL && H->capacity > 0 && H->size >= 0

&& is_array_expected_length(H->table, H->capacity);
}

An obvious data structure invariant of our hash set is that every element of a chain
hashes to the index of that chain. Then, the above specification function is incomplete:
we never test that the contents of the hash table satisfy this additional invariant. That
is, we test only on the struct hset, and not on the properties of the array within.

On the next page, extend is_hset from above, adding a helper function to check
that every element in the hash table belongs in the chain it is located in, and that
each chain is acyclic. You should assume we will use the following two functions for
hashing elements and for comparing them for equality:

int elem_hash(elem x);
bool elem_equiv(elem x, elem y);

Additionally, the constant-time function

int index_of_elem(hset* H, elem x)
/*@requires H->capacity > 0; @*/
/*@ensures 0 <= \result && \result < H->capacity; @*/ ;

maps an element to a valid index. It is provided for your convenience.

© Carnegie Mellon University 2024

15-122 Written Homework 8 Page 3 of 9

2.12pts Note: your answer needs only to work for hash tables containing a few hun-
dred million elements — do not worry about the number of elements exceeding
int_max().

// in_chain will be modified in a later task
bool in_chain(chain* p, elem x) { return true; }

bool has_valid_chains(hset* H)
// Preconditions (H != NULL, H->size >= 0...) omitted for space
{
int nodecount = 0;

for (int i = 0; i < ; i++) {

// set p to the first node of chain i in table, if any

chain* p = ;

while () {

elem x = p->data;

if (in_chain(p->next, x)) return false;

if (!= i)

return false;

nodecount++;

if (nodecount >)

return false;

p = ;

}
}

if ()

return false;

return true;
}

bool is_hset(hset* H) {
return H != NULL && H->capacity > 0 && H->size >= 0

&& is_array_expected_length(H->table, H->capacity)
&& has_valid_chains(H);

}

© Carnegie Mellon University 2024

15-122 Written Homework 8 Page 4 of 9

2.20.5pts We generally don’t care about the cost of specification functions, but what is the
worst case complexity of has_valid_chains as a function of the number n of
elements in the hash set?

O()

2.31pt The updated function is_hset still falls short of flagging all possible invalid
hash sets: nothing prevents a chain from containing multiple occurrences of an
element. Given the above declarations, update the function in_chain so that it
actually detects duplicate elements.

bool in_chain (chain* p, elem x) {

}

Given a hash set containing n elements, what is the cost of is_hset with this
additional update?

Cost: O()

© Carnegie Mellon University 2024

15-122 Written Homework 8 Page 5 of 9

2.42.5pts Sheng is implementing this hash set with an initial table capacity of 10. He wants
it to be very fast even if it contains lots of elements. He would like to know what
it would cost to insert n elements into an empty hash set and then look one up,
assuming an optimal hash function (i.e., one that distributes key uniformly).
We assume that each array or pointer access costs one unit of time. As always,
give the simplest, tightest bounds.

1. At first, Sheng implements a table that
never resizes. For each insertion, he
needs to find the correct chain, check
if the element is already in there, and
add it if it isn’t. What is the cost? What
is the amortized cost of an operation
in this sequence?

n insertions: O()

then, 1 lookup: O()

Amortized cost: O()

2. This is too slow for his needs! Sheng
decides to resize the table every time
its load factor exceeds 1.6. To do so, he
allocates a new table and rehashes all
the elements into it. He figures that,
since he needs space for one element,
he’ll resize the table by one. What are the
costs now?

n insertions: O()

then, 1 lookup: O()

Amortized cost: O()

3. Better but still very slow! Maybe re-
sizing by 1 is too little. Next, once the
load factor exceeds 1.6, Sheng resizes
the table to accommodate 15122 addi-
tional elements. What are the costs?

n insertions: O()

15122 lookups: O()

Amortized cost: O()

4. This is still slow! Stumped, Sheng
looks through his notes, and decides
to try doubling the table when the load
factor exceeds 1.6.

n insertions: O()

then, 1 lookup: O()

Amortized cost: O()

5. This is much faster, but he’s unsure why: both resizing by 15122 and dou-
bling the size of the table result in less frequent resizes. In one clear sentence,
explain to Sheng what makes doubling the table so much more efficient.

© Carnegie Mellon University 2024

15-122 Written Homework 8 Page 6 of 9

2.51.5pts In our hset implementation, we use a library helper function index_of_elem
that takes an element, computes its hash value using the client’s elem_hash func-
tion and converts this hash value to an integer. Here is this function, with the
return expression missing:

1 int index_of_elem(hset* H, elem x)
2 //@requires H->capacity > 0;
3 //@ensures 0 <= \result && \result < H->capacity;
4 {
5 int h = elem_hash(x);
6 return __________________________; // What should go here?
7 }

Answer the following questions about what to have on line 6:

1. Assume line 6 is

6 return abs(h) % H->capacity;

In this case, the function fails on exactly one value for h.

It fails when h =

2. Changing line 6 to

6 return h < 0 ? 0 : h % H->capacity;

solves this issue, but this is not a great solution. In one sentence, explain
what feature of the resulting hash table makes this solution undesirable.

(The ternary operator b ? e1 : e2 evaluates to the value of expression e1 if
the boolean test b is true, and to the value of e2 if b is false.)

3. Complete line 6 so it avoids the problems of the previous two attempts,
thereby making h a good hash function.

6 return (h < 0 ? : h) % H->capacity;

© Carnegie Mellon University 2024

15-122 Written Homework 8 Page 7 of 9

3. Generic Algorithms

A generic comparison function might be given a type as follows in C1:

typedef int compare_fn(void* x, void* y);

(Note: there’s no precondition that x and y are necessarily non-NULL.)

If we’re given such a function, we can treat x as being less than y if the function
returns a negative number, treat x as being greater than y if the function returns a
positive number, and treat the two arguments as being equal if the function returns 0.

Given such a comparison function, we can write a function to check that an array is
sorted even though we don’t know the type of its elements (as long as it is a pointer
type):

bool is_sorted(void*[] A, int lo, int hi, compare_fn* cmp)
//@requires 0 <= lo && lo <= hi && hi <= \length(A) && cmp != NULL;

3.11pt Complete the generic binary search function below. You don’t have access to
generic variants of lt_seg and gt_seg. Remember that, for sorted integer arrays,
gt_seg(x, A, 0, lo) was equivalent to lo == 0 || A[lo - 1] < x.

int binsearch_generic(void* x, void*[] A, int n, compare_fn* cmp)
//@requires 0 <= n && n <= \length(A) && cmp != NULL;
//@requires is_sorted(A, 0, n, cmp);
{
int lo = 0;
int hi = n;

while (lo < hi)
//@loop_invariant 0 <= lo && lo <= hi && hi <= n;

//@loop_invariant lo == || < 0;

//@loop_invariant hi == || > 0;

{
int mid = lo + (hi - lo)/2;

int c = ;

if (c == 0) return mid;
if (c < 0) lo = mid + 1;
else hi = mid;

}
return -1;

}

© Carnegie Mellon University 2024

15-122 Written Homework 8 Page 8 of 9

Suppose you have a generic sorting function, with the following contract:

void sort_generic(void*[] A, int lo, int hi, compare_fn* cmp)
//@requires 0 <= lo && lo <= hi && hi <= \length(A) && cmp != NULL;
//@ensures is_sorted(A, lo, hi, cmp);

3.21.5pts Write a string comparison function compare_strings that can be used with this
generic sorting function. Strings are compared lexicographically, something the
<string> library function string_compare does already. The contracts on your
compare_strings function must be sufficient to ensure that no precondition-
passing call to compare_strings can possibly cause a memory error. Depending
on how you write your solution, you may or may not need the extra space at the
beginning of this function.

int compare_strings(void* x, void* y)

//@requires x != NULL && \hastag();

//@requires y != NULL && \hastag();

{
// Extra space if needed

return ;

}

© Carnegie Mellon University 2024

https://c0.cs.cmu.edu/docs/c0-libraries.pdf

15-122 Written Homework 8 Page 9 of 9

3.32.5pts Using sort_generic (which you may assume has already been written) and
compare_strings, fill in the body of the sort_strings function below so that it
will sort the array A of strings. You can omit loop invariants. But of course, when
you call sort_generic, the preconditions of compare_strings must be satisfied
by any two elements of the array B.

void sort_strings(string[] A, int n)
//@requires \length(A) == n;
{
// Allocate a temporary generic array of the same size as A

void*[] B = ;

// Store a copy of each element in A into B

// Sort B using sort_generic and compare_strings from task 2

// Copy the sorted strings in your generic array B into A

}

© Carnegie Mellon University 2024

