
15-122: Principles of Imperative Computation, Spring 2024

Written Homework 10

Due on Gradescope: Monday 25th March, 2024 by 9pm

Name:

Andrew ID:

Section:

This written homework provides practice with some introductory C concepts.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• Kami, Adobe Acrobat Online, or DocHub, some web-based PDF editors that work
from anywhere.

• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Please do not add, remove or reorder pages.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 Total

Points: 2 4.5 6 12.5

Score:

https://www.gradescope.com/courses/697481
https://www.kamiapp.com/
https://www.adobe.com/acrobat/online.html
https://dochub.com/
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://www.gradescope.com/courses/697481

15-122 Written Homework 10 Page 1 of 12

1.2pts Contracts in C

The code below is taken from the lecture notes on binary search trees in C0. This is
also legal C code (assuming all the right definitions are available), but the contracts
will not be checked in C.

elem tree_lookup(tree* T, elem x)
//@requires is_tree(T) && x != NULL;
//@ensures \result == NULL || elem_compare(\result, x) == 0;
{
if (T == NULL) {
return NULL;

}
int cmp = elem_compare(x, T->data);
if (cmp == 0) {
return T->data;

} else if (cmp < 0) {
return tree_lookup(T->left, x);

} else {
//@assert cmp > 0;
return tree_lookup(T->right, x);

}
}

elem set_lookup(set* B, elem x)
//@requires is_set(B) && x != NULL;
//@ensures \result == NULL || elem_compare(\result, x) == 0;
{
return tree_lookup(B->root, x);

}

In the spaces on the next page, translate the C0 contracts above into C contracts (as
seen in class). You may need to make slight changes along the way. When compiled
with the -DDEBUG flag, your translated code should behave exactly in the same way
as the above C0 code when compiled with the flag -d. Use the variable result and
do not simplify any C contracts even if it is immediately obvious from the context that
you could do so.

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 2 of 12

elem tree_lookup(tree* T, elem x) {

elem result;
if (T == NULL) {

}
int cmp = elem_compare(x, T->data);
if (cmp == 0) {

} else if (cmp < 0) {

} else {

}
}

elem set_lookup(set* B, elem x) {

}

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 3 of 12

2. Free-range Geese

You are a field biologist tracking geese migrations. You inherited some C code you
hope will help you do this on a goose-by-goose fashion. However, this code is plagued
with problems.

2.12pts The main function below uses the following type declarations:

struct reading_header {
int x; // position in 3D
int y;
int z;
int heading; // direction: angle from North

};
typedef struct reading_header reading;

typedef struct reading_node reading_list;
struct reading_node {
reading *data;
reading_list *next;

};

The following code creates a test goose and populates some fields.

14 int main() {
15 reading_list *honk = xmalloc(sizeof(reading_list));
16 honk->data = xcalloc(sizeof(reading), 1);
17 honk->next = xmalloc(sizeof(reading_list));
18 honk->next->next = xmalloc(sizeof(reading_list));
19 honk->next->next->data = xmalloc(sizeof(reading));
20 honk->next->next->data->x = 13;
21 honk->next->next->data->y = 7;
22 honk->next->next->data->heading = 122;
23

24 // Memory Diagram 1
25 free(honk->next->next->next);
26 free(honk->next->next);
27 free(honk->next->data);
28 free(honk->data);
29 free(honk);
30

31 // Memory Diagram 2
32 return 0;
33 }

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 4 of 12

You suspect that even this simple test code has undefined behavior and memory
leaks! Trace its execution, drawing the diagram of allocated memory on lines 24
and 31. Report any line that causes an undefined behavior, but then ignore it as
you continue tracing execution. If a value is uninitialized, leave its box blank. In
the second diagram, cross out any memory that was freed.

Cite the lines with undefined behavior:

Memory diagram 1 (as execution reaches line 24):

Memory diagram 2 (as execution reaches line 31):

(Did you remember to cross out the memory that was freed?)

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 5 of 12

The code you inherited uses a makeshift data storage library implemented using
generic linked lists. (Note that these lists are distinct from the reading_list type used in
the previous task.) Here are the library-side type definitions.

typedef void* item; // Stored items (generic)
typedef void free_fn(item x); // Function that frees an item

struct list_node { // Standard linked lists
item data; // != NULL
list *next;

};
typedef struct list_node list;

struct datadump_header {
list *head; // NULL-terminated
free_fn *free_elem; // NULL to leave items alone

};
typedef struct datadump_header datadump;
typedef datadump* datadump_t;

bool is_datadump(datadump *D); // Checks that D is valid

You want to extend this library with the function datadump_to_readings(D) which
moves all the items in the data dump D into a reading_list. This call disposes of the
datadump D, which you shall assume was heap-allocated.

The next exercises are about memory leaks. Recall that memory is leaked when there
are no more references to it. Memory that is returned to the user is not leaked. Con-
sider the following example

1 int *f() {
2 int* p = xmalloc(sizeof(int));
3 p = xcalloc(1, sizeof(int));
4 return xmalloc(sizeof(int));
5 }

The memory allocated at line 2 becomes inaccessible at line 3 and is therefore leaked.
The memory allocated at line 3 becomes inaccessible when we return from this func-
tion on line 4. The memory allocated at line 4 is not leaked as it is returned to the
caller. We fix these leaks by inserting free(p) both between lines 2 and 3 and be-
tween lines 3 and 4.

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 6 of 12

2.21pt Your first attempt at writing datadump_to_readings is as follows. You suspect
it leaks memory and want to fix the leaks.

27 reading_list *datadump_to_readings(datadump *D) {
28 REQUIRES(is_datadump(D));
29

30 reading_list *dummy = xcalloc(sizeof(reading_list), 1);
31 reading_list *prev = dummy;
32 list *l = D->head;
33 free(D);
34

35 while (l != NULL) {
36 list *nxt = l->next;
37 prev->next = xcalloc(sizeof(reading_list), 1);
38 prev->next->data = (reading*)l->data;
39 prev = prev->next;
40 l = nxt;
41 }
42 reading_list *res = dummy->next;
43 return res;
44 }

In the table below, record the leaks in this code. For each leak, write down the
line which causes the memory to become inaccessible. Then, write a line of code
that fixes it, and indicate where to insert it. (You may not need all spaces.)

Line Code that fixes it Where to insert the fix

between lines and

between lines and

between lines and

between lines and

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 7 of 12

With datadump_to_readings fixed, here’s the resulting extended interface to the data
storage library, with C0-style contracts for readability.

// typedef __________ *datadump_t;
typedef void* item; // Stored items (generic)
typedef void free_fn(item x); // Function that frees an item

datadump_t datadump_new(free_fn *F)
/*@ensures \result != NULL; @*/ ;

void datadump_insert(datadump_t D, item x)
/*@requires D != NULL && x != NULL; @*/ ;

reading_list *datadump_to_readings(datadump *D)
/*@requires D != NULL; @*/ ;

As a client, you have already written the functions

bool more_readings(int id) ;

reading *get_next_reading(int id)
/*@requires more_readings(id); @*/ ;

void print_readings(reading_list *R) ;

The first returns whether there are more location readings to process for goose num-
ber id. If so, the second stores the location values of the next unprocessed reading
on the heap and returns a pointer to it (behind the scenes, it marks this reading as
processed). The last one prints the contents of a reading_list*.
You write the following test that combines all these functionalities.

83 #define HONK 15122
84 int main() {
85 datadump_t D = datadump_new(NULL);
86 while (more_readings(HONK))
87 datadump_insert(D, (void*)get_next_reading(HONK));
88 }
89

90 reading_list *R = datadump_to_readings(D);
91 print_readings(R);
92 free(R);
93 return 0;
94 }

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 8 of 12

2.30.5pts The first time you run it, valgrind tells you you are still leaking memory! What
is being leaked, and on what line does the memory become inaccessible? Be
specific and exhaustive about what needs to be freed.

Leaked memory:

Line number of leak:

2.41pt Write a recursive function free_readings(R) to be used in place of line 92 so
that no memory is leaked. You may assume that all the memory accessible from
R is heap-allocated, and no data field is NULL. You will need to refer to the type
declarations on page 3.

void free_readings(reading_list* R) {

}

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 9 of 12

3. A Heap of Bytes

We can think of the heap as a huge block of memory administered by the system.
When we call malloc and calloc (or their x variants), we get a temporary “permit”
to use some of it. Specifically, malloc reserves for us a chunk of this memory and
returns a pointer to this block, which is now ours. When we are done with it, we call
free to give it back — our permit is not valid any more.

3.12pts Consider the following simple C program:

1 int main() {
2 int *A = xmalloc(sizeof(int));
3 int *B = xcalloc(2, sizeof(int));
4 int *C = B + 1;
5 *A = 5;
6 *C = 6;
7 return 0;
8 }

Here’s an abstract representation of the heap just after line 3 has been executed
(assuming an int takes up 4 bytes). The shaded regions were reserved for you.
The other regions belong to the system and you have no right to use them.

Based on this representation, what is the value of the following expressions just
before this code executes line 7 (the return statement)? If evaluating an expres-
sion would have undefined behavior, put down 0x15122. For this task, you may
assume execution will not crash if you access any of these addresses.

A:

B:

C:

B+1:

B+2:

*A:

*B:

*(B+1):

*(B+2):

((int)0xB4): 1

1Do not do this in your code!

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 10 of 12

3.21pt Let’s say we free A just before line 7. Answer the following questions.

• List the addresses in this heap fragment that would be undefined to
access. (Feel free to write address ranges.)

• How many bytes of memory will valgrind report as lost once this pro-
gram returns?

• Say we add the line

int v = *A;

right after freeing A. Check all the behaviors that may plausibly take
place as a result of executing this line.

v contains 0.

v contains 0x00000005.

sinks Christopher Columbus’s ships before he landed in the Amer-
icas in 1492.

turns off the sun within a second of executing this instruction.

the program halts with a segmentation fault.

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 11 of 12

3.31pt Calling malloc or calloc (or their x variants) procures a block of contiguous
memory of the requested length (in bytes). Because it is contiguous, we can treat
it as an array. Consider the following code:

21 void f(int *A, int *B, size_t n) {
22 for (size_t i = 0; i < n; i++)
23 *(B + i) = *(A + i);
24 }
25

26 int main() {
27 size_t n = 4;
28 int *A = xcalloc(n, sizeof(int));
29 for (size_t i = 0; i < n; i++) {
30 *(A + i) = i;
31 }
32

33 f(A, A + 2, n/2);
34 f(A, A + 3, n/3);
35 free(A);
36 return 0;
37 }

In the picture below, highlight clearly the bytes in memory that get allocated
on line 28. Then, clearly indicate on the diagram which addresses correspond to
each of the pointers A+1, A+2, A+3. Again, assume an int takes up 4 bytes. Feel
free to write numbers in the boxes as you trace the code.

3.41pt What can we say after the function call on line 33 returns?

A contains [, , ,]

How many bytes get freed on line 35?

© Carnegie Mellon University 2024

15-122 Written Homework 10 Page 12 of 12

3.51pt While C lets you use pointer arithmetic in your code, programs are more readable
if we only ever use the standard array notation. Rewrite the previous function so
that it does not use pointer arithmetic, leaving everything else the same.

void f(int *A, int *B, size_t n) {
for (size_t i = 0; i < n; i++)

;

}

int main() {
size_t n = 4;
int *A = xcalloc(n, sizeof(int));
for (size_t i = 0; i < n; i++) {

;

}

;

;

free(A);
return 0;

}

© Carnegie Mellon University 2024

