CS15-319: Cloud Computing

Lecture 2
Introduction to Cloud Computing
Prof. Majd F. Sakr
Lecture Outline

Discussion On

Cloud Infrastructure

Service Models of Cloud Computing

The Cloud Stack

Types of Clouds and CMUQ’s Private Cloud

Software Service Models

© Carnegie Mellon University in Qatar
Lecture Outline

Discussion On

Cloud Infrastructure

Service Models of Cloud Computing

The Cloud Stack

Types of Clouds and CMUQ’s Private Cloud

Software Service Models
What is a Server?

- Servers are computers that provide “services” to “clients”
- They are typically designed for reliability and to service a large number of requests
- Organizations typically require many physical servers to provide various services (Web, Email, Database, etc.)
- Server hardware is becoming more powerful and compact
Compact Servers

- Organizations would like to conserve the amount of floor space dedicated to their computer infrastructure.

- For large-scale installations, compact servers are used. This helps with:
 - Floor Space
 - Manageability
 - Scalability
 - Power and Cooling
Racks

- Equipment (e.g., servers) are typically placed in **racks**.

- Equipment are designed in a modular fashion to fit into **rack units** (1U, 2U etc.).

- A single rack can hold up to 42 1U servers.
Blades and Blade Enclosures

- A blade server is a stripped down computer with a modular design.

- A blade enclosure holds multiple blade servers and provides power, interfaces and cooling for the individual blade servers.
Blade Performance

- Consider bandwidth and latency between these layers
...Performance across blades

- Consider bandwidth and latency across blades

Network is usually the bottleneck
What is a Data Center?

- A **data center** is a facility used to house computer systems and associated components, such as networking and storage systems, cooling, uninterruptable power supply, air filters…

- A data center typically houses a large number of heterogeneous networked computer systems

- A data center can occupy one room of a building, one or more floors, or an entire building
Data Center Components

- Air conditioning
 - Keep all components in the manufacturer’s recommended temperature range
- Redundant Power
 - UPS/Generators
 - Multiple power feeds
- Fire protection
- Physical security
 - CCTV/Access Control
- Monitoring Systems
- Connectivity
 - Multiple ISPs/Leased Lines
The Network of a Modern Data Center

- **CR** = L3 Core Router, **AR** = L3 Access Router, **S** = L2 Switch, **LB** = Load Balancer, **A** = Rack of 20 servers (Cisco with ~ 4,000 servers)
Communication In Data Centers

- Communication in data centers are most often based on networks running the IP protocol suite.

- Data centers contain a set of routers and switches that transport traffic between the servers and to the outside world.

- Traffic in today’s data centers:
 - 80% of the packets stay inside the data center.
 - Trend is towards even more internal communication.

- Typically, data centers run two kinds of applications:
 - Outward facing (serving web pages to users).
 - Internal computation (data mining and index computations—think of MapReduce and HPC).
Communication Latency

- Propagation delay in the data center is essentially 0
 - Light goes a foot in a nanosecond

- End to end latency comes from
 - Switching latency
 - 10G to 10G: ~2.5 usec (store&fwd); 2 usec (cut-thru)
 - Queuing latency
 - Depends on size of queues and network load

- Typical times across a quiet data center: 10-20usec
Elasticity and Performance

- Bare data centers make it hard for applications to grow/shrink
 - VLANs can be used to isolate applications from each other
 - IP addresses are topologically determined by Access Routers
 - Reconfiguration of IPs and VLAN trunks is painful, error-prone, slow, and often manual

- In addition, no performance isolation is provided:
 - VLANs typically provide reachability isolation only
 - One service sending/receiving too much traffic hurts all services sharing its subtree
Power in Data Centers

- Pretty good data centers have efficiency of 1.7
 - 0.7 Watts lost for each 1W delivered to the servers

- How can we reduce power costs?
 - Create servers that use less power?
 - Conventional server uses 200 to 500W
 - Reductions have ripple effects across entire data center
 - Mostly a problem for scientists to tackle!!

- Eliminate power redundancy?
 - Allow entire data centers to fail

- Reduce power usage of network gear?
 - Total power consumed by switches amortizes to 10-20W per server
Utilization In Data Centers

- Utilization of 10% to 30% is considered “good” in data centers

- Causes:
 - Uneven application fit:
 - Each server has CPU, memory, and disk: most applications exhaust one resource, stranding the others
 - Long provisioning timescales
 - Uncertainty in demand:
 - Demand for a new service can spike quickly
 - Risk management:
 - Not having spare servers to meet application demands leads to failure
What About?

- Maximize useful work per dollar spent – 59% of dollars are spent on servers with very low utilization (10%)

- Turn the servers into a single large resource pool and let services “breathe” : dynamically expand and contract their footprint as needed

- Two main requirements:
 - Means for rapidly and dynamically satisfying application fluctuating resource needs
 - Means for servers to quickly and reliably access shared and persistent data
 - Data too large to copy during provisioning process

Enabled by Virtualization

Enabled by Programming Models and Distributed File Systems
A Cloud is …

- A data center hardware and software that the vendors use to offer the computing resources and services
Cloud Computing

“Cloud Computing is the transformation of IT from a product to a service”
Cloud Computing

Cloud Computing is the delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices, as a metered service over a network.
Discussion On

Service Models of Cloud Computing

Types of Clouds and CMUQ’s Private Cloud

Software Service Models

Cloud Infrastructure

The Cloud Stack

Services Models of Cloud Computing

© Carnegie Mellon University in Qatar
IT as a Service

- How do you offer IT as a service?
- Different users have different needs
- Consider the needs of:
 - Average End User
 - Mobile Application Developer
 - Enterprise System Architect

Let us look at some of the typical service models
Cloud Service Models

- **Software-as-a-Service**
 - Applications running on browsers

- **Platform-as-a-Service**
 - A software platform that is made available to developers to build cloud applications

- **Infrastructure-as-a-Service**
 - Basic computing resources such as CPU/Memory/Disk, made available to users in the form of Virtual Machine Instances

© Carnegie Mellon University in Qatar
SaaS

- You are most familiar with this!
- Software is delivered as a service over the Internet, eliminating the need to install and run the application on the customer's own computer
- This simplifies maintenance and support
- Examples: Gmail, YouTube, and Google Docs, among others
SaaS Maturity Levels

- **Distinguishing attributes:** configurability, multi-tenant efficiency, scalability

<table>
<thead>
<tr>
<th>Level</th>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Configurable</td>
<td>Each has its own customized version of the application and run its own instance</td>
</tr>
<tr>
<td>2</td>
<td>+ Multi-tenant-efficient</td>
<td>Same application but distinct instance/customer</td>
</tr>
</tbody>
</table>
| 3 | + Scalable | (+): Efficient use of server resources without apparent differences to end users
| | | (-): scalability limits |

© Carnegie Mellon University in Qatar
PaaS

- The Cloud provider exposes a set of tools (a platform) which allows users to create SaaS applications.
- The SaaS application runs on the provider’s infrastructure.
- The cloud provider manages the underlying hardware and requirements.
PaaS Example I

- Google App Engine

Build web applications on Google’s Infrastructure
PaaS Example II

- The Facebook Developer Platform

Set of APIs that allow you to create Facebook Applications
IaaS (1/3)

- The cloud provider leases to users Virtual Machine Instances (i.e., computer infrastructure) using the virtualization technology.

- The user has access to a standard Operating System environment and can install and configure all the layers above it.
The virtualization technology is a major enabler of IaaS
IaaS (3/3)

Virtualization

- Web 2.0 Collaborative Innovation
- Software Development
- Virtual Classroom
- Data Intensive Processing
- High Volume Transactions

Request Driven Provisioning & Service Management

- Service Catalog
- Request UI
- Operations UI
- Dynamic Scheduling
- Monitoring
- Capacity Planning SLA

Workloads

- Virtual Servers
- Virtual Storage
- Virtual Networks
- Virtual Applications & Middleware
- Virtual Clients

Virtualization

- Servers
- Power Systems
- Racks, BladeCenter
- Storage
- Networking

Physical Layer
IaaS Example

- Amazon Web Service Elastic Compute Cloud (EC2)
Other Service Models

- Hardware-as-a-Service
- Communication-as-a-Service
- XaaS
 - “X” as a Service
Datacenter-as-a-Service

- Increasing Number of Servers
- Manpower, Electricity, Cooling, Security?
 - Management Nightmare
- Why not give it to someone else?
Lecture Outline

Discussion On

The Cloud Stack

Service Models of Cloud Computing

Types of Clouds and CMUQ’s Private Cloud

Software Service Models

Cloud Infrastructure

© Carnegie Mellon University in Qatar
The Cloud Stack

- Applications
- Data
- Runtime
- Middleware
- Operating System
- Virtualization
- Servers
- Storage
- Networking
Applications

- Cloud applications can range from Web applications to scientific computational jobs
Data

- Data Management
- New generation cloud-specific databases and management systems
- E.g., Hbase, Cassandra, Hive, Pig etc.
Runtime Environment

- Runtime platforms to support cloud programming models
- E.g., MPI, MapReduce, Pregel etc.
Middleware for Clouds

- Management platforms that enable:
 - Resource Management
 - Monitoring
 - Provisioning
 - Identity Management and Security
Operating Systems

- Standard Operating Systems used in Personal Computing
- Packaged with libraries and software for quick deployment and provisioning
- E.g., Amazon Machine Images (AMI) contain OS as well as required software packages as a “snapshot” for instant deployment
Virtualization

- Key Component
- Resource Virtualization
- Amazon EC2 is based on the Xen virtualization platform
Cloud Service Layers in the Service Levels
Lecture Outline

Discussion On

Cloud Infrastructure

Service Models of Cloud Computing

The Cloud Stack

Types of Clouds and CMUQ’s Private Cloud

Software Service Models
Types of Clouds (1/4)

- Public
- Private
- Hybrid
Types of Clouds (2/4)

- Public (external) cloud
 - Open market for on demand computing and IT resources
 - Concerns: Limited SLA, reliability, availability, security, trust and confidence
 - Examples: IBM, Google, Amazon, …
Types of Clouds (3/4)

- Private (Internal) cloud
 - For enterprises/corporations with large scale IT
Types of Clouds (4/4)

- Hybrid cloud
 - Extend the private cloud(s) by connecting it to other external cloud vendors to make use of their available cloud services

- Cloud Burst
 - Use the local cloud, and when you need more resources, burst into the public cloud
The Qloud: CMUQ’s Private Cloud
CMU-Q’s Research Data Center
One of Qloud Hardware (1/3)

- IBM Bladecenter H
 - Advanced Management Module
 - Two Nortel Gigabit Switches
 - 112 cores
 - 7TB of storage
 - 14 Blades
One of Qloud Hardware (2/3)

- Each Blade

Intel Xeon(R) CPU (8-core) 3.16GHz & 64-bit

Bandwidth: 21.3GB/s

8 GB RAM
speed is 667MHz

Intel Xeon(R) CPU (8-core) 3.16GHz & 64-bit

Bandwidth: 600MB/s

300 GB SAS SCS 1 disk

300 GB SAS SCS 1 disk
One of Qloud Hardware (3/3)

- **Qloud Network**
 - 2 1-Gbit switches
 - Each blade is connected to each of the switches
Qloud Stack

Applications

Bayesian Classification, K-Means, etc.

Data

HDFS

Runtime

Apache Hadoop 0.20.1

Middleware

Ganglia cluster monitoring system and the VMware vSphere Client

Operating System

64-Bit Fedora 13

Virtualization

Vmware vSphere 4.1/ESXi 4.1

Servers

14 IBM Quad Core (E5420) Blades

Storage

Storage/Blade = 2 x 300 GB SAS & RAM/Blade = 8 GB RAM

Networking

© Carnegie Mellon University in Qatar
A New Cloud at CMU-Q

Total Installed Capacity:
20 Servers
240 Cores, 960 GB Memory,
18 TB local storage, 20 TB
SAN Storage
VMWare vSphere 4.x
Virtualization Environment
Lecture Outline

Discussion On

Cloud Infrastructure

Service Models of Cloud Computing

The Cloud Stack

Types of Clouds and CMUQ’s Private Cloud

Software Service Models

© Carnegie Mellon University in Qatar
Economics of Cloud Computing

- Evolution of Software Service Models
- What is the Value Proposition for Cloud Computing?
- How did Cloud Computing emerge from business / industry rather than from Academia?
Cost of Information Technology

- When you are using IT there are three primary costs associated with it:
 - Software Cost (Media + License cost/user)
 - Support Cost (Vendor Support, Updates and Patches etc.)
 - Management Cost (IT Infrastructure costs, Manpower, etc.)
Traditional Model

- Classical Model
- Software provider develops software and charges a license fee per user for the client
- The provider may charge a support fee /user
- The management of the software is the client’s responsibility
 - Up to 4x the cost of the actual software per year!
 - Infrastructure, Manpower, software maintenance
- Traditional Software – Oracle etc.
Software Service Models

<table>
<thead>
<tr>
<th>Category</th>
<th>Traditional Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Cost</td>
<td>$4000 /user (one-time)</td>
</tr>
<tr>
<td>Support Cost</td>
<td>$800 /user /year</td>
</tr>
<tr>
<td>Management Cost</td>
<td>Up to 4x the cost of Software!</td>
</tr>
<tr>
<td>Deployment Location</td>
<td>Client Side</td>
</tr>
</tbody>
</table>

© Carnegie Mellon University in Qatar
Open Source Model

- “Free” Model
- Software provider packages Open Source Software and provides it at little or no cost to the client
- The provider makes money on support – charges a higher fee than traditional model
- The cost of Managing the software remains the same as Traditional Model
 - Up to 4x the cost of the actual software per year!
 - Infrastructure, Manpower, software maintenance
Software Service Models

<table>
<thead>
<tr>
<th></th>
<th>Traditional</th>
<th>Open Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Cost</td>
<td>$4000 /user (one-time)</td>
<td>$0 /user</td>
</tr>
<tr>
<td>Support Cost</td>
<td>$800 /user /year</td>
<td>$1600 /user /year</td>
</tr>
<tr>
<td>Management Cost</td>
<td>Up to 4x the cost of Software!</td>
<td></td>
</tr>
<tr>
<td>Deployment Location</td>
<td>Client Side</td>
<td></td>
</tr>
</tbody>
</table>

© Carnegie Mellon University in Qatar
Outsourcing Model

- Primary cost of Software Management is in Manpower
- Why not delegate the management of software to a country with cheaper labor costs
 - India, China etc.
- Outsource the management of software for a flat fee – keep IT management costs under control
Software Service Models

Software Cost
- **Traditional**: $4000 /user (one-time)
- **Open Source**: $0 /user
- **Outsourcing**: $4000 /user (one-time)

Support Cost
- **Traditional**: $800 /user /year
- **Open Source**: $1600 /user /year
- **Outsourcing**: $800 /user /year

Management Cost
- **Traditional**: Up to 4x the cost of Software!
- **Outsourcing**: < 1300 /user /month

Deployment Location
- **Traditional**: Client Side
- **Outsourcing**: Client or Provider Side
Hybrid and Hybrid+ Model

- Business Software Requirements do not change often.
 - ERP/Financials/CRM etc.
- Why reinvent the wheel?
- Standardize, Specialize and Repeat
 - Create a flexible version of the Software that can be quickly configured and deployed.
 - Automate support through remote access.
- Sell easy to deploy software to many clients.
 - Decrease the Margin
 - Increase the Customers
- Hybrid+ is more advanced – charge a flat monthly fee for the software, support and management
Software as a Service Cloud Computing

- Develop Web Application
- Offer to customers over Internet
- No deployment costs
- Amortize Management and Support costs over many clients
Software Service Models

<table>
<thead>
<tr>
<th>Service Model</th>
<th>Software Cost</th>
<th>Support Cost</th>
<th>Management Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>$4000 /user (one-time)</td>
<td>$800 /user /year</td>
<td>Up to 4x the cost of Software!</td>
</tr>
<tr>
<td>Open Source</td>
<td>$0 /user</td>
<td>$1600 /user /year</td>
<td></td>
</tr>
<tr>
<td>Outsourcing</td>
<td>$4000 /user (one-time)</td>
<td>$800 /user /year</td>
<td>Bid < 1300 /user /month</td>
</tr>
<tr>
<td>Hybrid</td>
<td>$4000 /user (one-time)</td>
<td>$800 /user /year</td>
<td>$150 /user /month</td>
</tr>
<tr>
<td>Hybrid+</td>
<td>$300 /user month</td>
<td>< $100 /user /month</td>
<td></td>
</tr>
<tr>
<td>SaaS</td>
<td>$4000 /user (one-time)</td>
<td>$800 /user /year</td>
<td>$150 /user /month</td>
</tr>
</tbody>
</table>

Deployment Location:
- Client Side
- Client or Provider Side
- Provider Side