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 Last session
 Programming Models- Part I

 Today’s session
 Programming Models – Part II

 Announcement:
 Project update is due on Wednesday February 1st
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What is MPI?
 The Message Passing Interface (MPI) is a message passing library

standard for writing message passing programs

 The goal of MPI is to establish a portable, efficient, and flexible
standard for message passing

 By itself, MPI is NOT a library - but rather the specification of what
such a library should be

 MPI is not an IEEE or ISO standard, but has in fact, become the
industry standard for writing message passing programs on
HPC platforms
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Reasons for using MPI
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Reason Description

Standardization MPI is the only message passing library which can be 
considered a standard. It is supported on virtually all 
HPC platforms

Portability There is no need to modify your source code when you port 
your application to a different platform that supports the 
MPI standard

Performance Opportunities Vendor implementations should be able to exploit native 
hardware features to optimize performance

Functionality Over 115 routines are defined

Availability A variety of implementations are available, both vendor and 
public domain
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What Programming Model?
 MPI is an example of a message passing programming model

 MPI is now used on just about any common parallel architecture
including MPP, SMP clusters, workstation clusters and
heterogeneous networks

 With MPI, the programmer is responsible for correctly identifying
parallelism and implementing parallel algorithms using
MPI constructs
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Communicators and Groups
 MPI uses objects called communicators and groups to define which

collection of processes may communicate with each other to solve a
certain problem

 Most MPI routines require you to specify a communicator
as an argument

 The communicator MPI_COMM_WORLD is often used in calling
communication subroutines

 MPI_COMM_WORLD is the predefined communicator that includes
all of your MPI processes
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Ranks
 Within a communicator, every process has its own unique, integer

identifier referred to as rank, assigned by the system when the
process initializes

 A rank is sometimes called a task ID. Ranks are contiguous and
begin at zero

 Ranks are used by the programmer to specify the source and
destination of messages

 Ranks are often also used conditionally by the application to control
program execution (e.g., if rank=0 do this / if rank=1 do that)
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Multiple Communicators
 It is possible that a problem consists of several sub-problems where

each can be solved independently

 This type of application is typically found in the category of MPMD
coupled analysis

 We can create a new communicator for each sub-problem as a
subset of an existing communicator

 MPI allows you to achieve that by using MPI_COMM_SPLIT
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Example of Multiple 
Communicators

 Consider a problem with a fluid dynamics part and a structural
analysis part, where each part can be computed in parallel

Rank=0

Rank=0

Comm_Fluid

Rank=1

Rank=1

Rank=2

Rank=2

Rank=3

Rank=3

Rank=0

Rank=4

Comm_Struct

Rank=1

Rank=5

Rank=2

Rank=6

Rank=3

Rank=7

MPI_COMM_WORLD

 Ranks within MPI_COMM_WORLD are printed in red
 Ranks within Comm_Fluid are printed with green
 Ranks within Comm_Struct are printed with blue

© Carnegie Mellon University in Qatar 11



Message Passing Interface

12

MPI

Basics Point-to-point 
communication

Collective 
communicationBasics Point-to-point 

communication

© Carnegie Mellon University in Qatar



Point-to-Point Communication

 MPI point-to-point operations typically involve message passing
between two, and only two, different MPI tasks

 One task performs a send operation 
and the other performs a matching
receive operation

 Ideally, every send operation would be perfectly synchronized with
its matching receive

 This is rarely the case. Somehow or other, the MPI implementation 
must be able to deal with storing data when the two tasks are 
out of sync
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Two Cases

 Consider the following two cases:

1. A send operation occurs 5 seconds before the 
receive is ready - where is the message stored while 
the receive is pending?

2. Multiple sends arrive at the same receiving task 
which can only accept one send at a time - what 
happens to the messages that are "backing up"?
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Steps Involved in Point-to-Point 
Communication

1. The data is copied
to the user buffer
by the user

2. The user calls one
of the MPI send
routines

3. The system copies
the data from the
user buffer to the
system buffer

4. The system sends
the data from the
system buffer to
the destination
process

1. The user calls one
of the MPI receive
routines

2. The system
receives the data
from the source
process and
copies it to the
system buffer

3. The system copies
data from the
system buffer to
the user buffer

4. The user uses
data in the user
buffer

sendbuf
sysbuf

Call a send routine

Now sendbuf can be 
reused

Copying data from
sendbuf to sysbuf

Send data from
sysbuf to destination

recvbuf

sysbuf

Call a recev routine

Now recvbuf contains 
valid data

Copying data from
sysbuf to recvbuf

Receive data from
source to sysbuf

Process 0
User Mode Kernel Mode

Process 1
User Mode Kernel Mode

1

2
3

4

Data

1 2

3

4

Sender

Receiver
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Blocking Send and Receive

 When we use point-to-point communication routines, we usually 
distinguish between blocking and non-blocking communication

 A blocking send routine will only return after it is safe to modify the 
application buffer for reuse 

 Safe means that modifications will not affect 
the data intended for the receive task

 This does not imply that the data was 
actually received by the receiver- it may be 
sitting in the system buffer at the sender side
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Blocking Send and Receive

 A blocking send can be:

1. Synchronous: Means there is a handshaking occurring with the 
receive task to confirm a safe send

2. Asynchronous: Means the system buffer at the sender side is 
used to hold the data for eventual delivery to the receiver

 A blocking receive only returns after the data has arrived (i.e., 
stored at the application recvbuf) and is ready for use by 
the program
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Non-Blocking Send and Receive (1)

 Non-blocking send and non-blocking receive routines 
behave similarly

 They return almost immediately

 They do not wait for any communication events to complete 
such as:

 Message copying from user buffer to system buffer 
 Or the actual arrival of a message
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Non-Blocking Send and Receive (2)

 However, it is unsafe to modify the application buffer until you make 
sure that the requested non-blocking operation was actually 
performed by the library

 If you use the application buffer before the copy completes:

 Incorrect data may be copied to the system buffer
(in case of non-blocking send)

 Or your receive buffer does not contain what you want
(in case of non-blocking receive)

 You can make sure of the completion of the copy by
using MPI_WAIT() after the send or receive operations
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Why Non-Blocking Communication?

 Why do we use non-blocking communication despite
its complexity?

 Non-blocking communication is generally faster than its
corresponding blocking communication

 We can overlap computations while the system is copying data
back and forth between application and system buffers
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MPI Point-To-Point Communication 
Routines
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Routine Signature

Blocking send int MPI_Send( void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm ) 

Non-blocking send int MPI_Isend( void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request )

Blocking receive int MPI_Recv( void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status )

Non-blocking receive int MPI_Irecv( void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request )

Routine Signature

Blocking send int MPI_Send( void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm ) 

Non-blocking send int MPI_Isend( void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request )

Blocking receive int MPI_Recv( void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status )

Non-blocking receive int MPI_Irecv( void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request )

Routine Signature

Blocking send int MPI_Send( void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm ) 

Non-blocking send int MPI_Isend( void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request )

Blocking receive int MPI_Recv( void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status )

Non-blocking receive int MPI_Irecv( void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request )

Routine Signature

Blocking send int MPI_Send( void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm ) 

Non-blocking send int MPI_Isend( void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request )

Blocking receive int MPI_Recv( void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status )

Non-blocking receive int MPI_Irecv( void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request )

Routine Signature

Blocking send int MPI_Send( void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm ) 

Non-blocking send int MPI_Isend( void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request )

Blocking receive int MPI_Recv( void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status )

Non-blocking receive int MPI_Irecv( void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request )
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MPI Example: Adding Array 
Elements

#include <stdio.h>
#include <mpi.h>

#define array_size 20
#define num_elem_pp 10
#define tag1 1
#define tag2 2

int array_send[array_size];
int array_recv[num_elem_pp];

int main(int argc, char **argv){

int myPID;
int num_procs;
int sum = 0;
int partial_sum = 0;
double startTime = 0.0;
double endTime;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myPID);
MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if(myPID == 0 )
{

startTime = MPI_Wtime();

Initialize MPI environment

The Master
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MPI Example: Adding Array 
Elements

int i;
for(i= 0; i < array_size; i++)

array_send[i] = i;

int j;
for(j = 1; j < num_procs; j++){

int start_elem = j * num_elem_pp;
int end_elem = start_elem + num_elem_pp;

MPI_Send(&array_send[start_elem], num_elem_pp, MPI_INT, j, tag1, 
MPI_COMM_WORLD);

}

int k;
for(k=0; k < num_elem_pp; k++)

sum += array_send[k];

int l;
for(l = 1; l < num_procs; l++){

MPI_Recv(&partial_sum, 1, MPI_INT, MPI_ANY_SOURCE, tag2, 
MPI_COMM_WORLD, &status);

printf("Partial sum received from process %d = %d\n", l, status.MPI_SOURCE);
sum += partial_sum;

}

The Master allocates equal portions of the 
array to each process

The Master calculates its partial sum

The Master 
collects all 
partial sums 
from all 
processes and 
calculates a 
grand total
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MPI Example: Adding Array 
Elements

endTime = MPI_Wtime();
printf("Grand Sum = %d and time taken = %f\n", sum, (endTime-startTime));

}else{

MPI_Recv(&array_recv, num_elem_pp, MPI_INT, 0, tag1, MPI_COMM_WORLD, &status);

int i;
for(i = 0; i < num_elem_pp; i++)

partial_sum += array_recv[i];

MPI_Send(&partial_sum, 1, MPI_INT, 0, tag2, MPI_COMM_WORLD);

}

MPI_Finalize();

}

The Slave receives its array share

The Slave 
calculates its 
partial sum

The Slave sends to the Master its partial sum

Terminate the MPI execution environment

The Slave
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Unidirectional Communication

 When you send a message from process 0 to process 1, there are
four combinations of MPI subroutines to choose from

1. Blocking send and blocking receive

2. Non-blocking send and blocking receive

3. Blocking send and non-blocking receive

4. Non-blocking send and non-blocking receive
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Bidirectional Communication

 When two processes exchange data with each other, there are
essentially 3 cases to consider:

 Case 1: Both processes call the send 
routine first, and then receive

 Case 2: Both processes call the receive 
routine first, and then send

 Case 3: One process calls send and receive routines in this order, and 
the other calls them in the opposite order

26

Rank 0 Rank 1

sendbuf

recvbuf

recvbuf

sendbuf
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Bidirectional Communication-
Deadlocks

 With bidirectional communication, we have to be careful
about deadlocks

 When a deadlock occurs, processes
involved in the deadlock will not proceed
any further

 Deadlocks can take place:

1. Either due to the incorrect order of send and receive
2. Or due to the limited size of the system buffer

27
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sendbuf

recvbuf

recvbuf

sendbuf
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Case 1. Send First and Then Receive

 Consider the following two snippets of pseudo-code:

 MPI_ISEND immediately followed by MPI_WAIT is logically
equivalent to MPI_SEND

28

IF (myrank==0) THEN
CALL MPI_SEND(sendbuf, …)
CALL MPI_RECV(recvbuf, …)

ELSEIF (myrank==1) THEN
CALL MPI_SEND(sendbuf, …)
CALL MPI_RECV(recvbuf, …)

ENDIF 

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, …, ireq, …)
CALL MPI_WAIT(ireq, …)
CALL MPI_RECV(recvbuf, …)

ELSEIF (myrank==1) THEN
CALL MPI_ISEND(sendbuf, …, ireq, …)
CALL MPI_WAIT(ireq, …)
CALL MPI_RECV(recvbuf, …)

ENDIF 
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Case 1. Send First and Then Receive

 What happens if the system buffer is larger than the send buffer?

 What happens if the system buffer is smaller than the
send buffer?

Rank 0 Rank 1
sendbuf

sysbuf

sendbuf

sysbuf

recvbuf recvbuf

Network

Rank 0 Rank 1
sendbuf

sysbuf

sendbuf

sysbuf

recvbuf recvbuf

Network

DEADLOCK!
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Case 1. Send First and Then Receive

 Consider the following pseudo-code:

 The code is free from deadlock because:
 The program immediately returns from MPI_ISEND and starts receiving

data from the other process
 In the meantime, data transmission is completed and the calls of MPI_WAIT

for the completion of send at both processes do not lead to a deadlock

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, …, ireq, …)
CALL MPI_RECV(recvbuf, …)
CALL MPI_WAIT(ireq, …)

ELSEIF (myrank==1) THEN
CALL MPI_ISEND(sendbuf, …, ireq, …)
CALL MPI_RECV(recvbuf, …)
CALL MPI_WAIT(ireq, …)

ENDIF 

© Carnegie Mellon University in Qatar 30



Case 2. Receive First and Then Send

 Would the following pseudo-code lead to a deadlock?

 A deadlock will occur regardless of how much system buffer we have

 What if we use MPI_ISEND instead of MPI_SEND?

 Deadlock still occurs

IF (myrank==0) THEN
CALL MPI_RECV(recvbuf, …)
CALL MPI_SEND(sendbuf, …)

ELSEIF (myrank==1) THEN
CALL MPI_RECV(recvbuf, …)
CALL MPI_ISEND(sendbuf, …)

ENDIF 

© Carnegie Mellon University in Qatar 31



Case 2. Receive First and Then Send

 What about the following pseudo-code?

 It can be safely executed

IF (myrank==0) THEN
CALL MPI_IRECV(recvbuf, …, ireq, …)
CALL MPI_SEND(sendbuf, …)
CALL MPI_WAIT(ireq, …)

ELSEIF (myrank==1) THEN
CALL MPI_IRECV(recvbuf, …, ireq, …)
CALL MPI_SEND(sendbuf, …)
CALL MPI_WAIT(ireq, …)

ENDIF 
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Case 3. One Process Sends and 
Receives; the other Receives and Sends
 What about the following code?

 It is always safe to order the calls of MPI_(I)SEND and
MPI_(I)RECV at the two processes in an opposite order

 In this case, we can use either blocking or non-blocking subroutines

IF (myrank==0) THEN
CALL MPI_SEND(sendbuf, …)
CALL MPI_RECV(recvbuf, …)

ELSEIF (myrank==1) THEN
CALL MPI_RECV(recvbuf, …)
CALL MPI_SEND(sendbuf, …)

ENDIF 
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A Recommendation

 Considering the previous options, performance, and the avoidance
of deadlocks, it is recommended to use the following code:

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, …, ireq1, …)
CALL MPI_IRECV(recvbuf, …, ireq2, …)

ELSEIF (myrank==1) THEN
CALL MPI_ISEND(sendbuf, …, ireq1, …)
CALL MPI_IRECV(recvbuf, …, ireq2, …)

ENDIF 
CALL MPI_WAIT(ireq1, …)
CALL MPI_WAIT(ireq2, …)
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Collective Communication

 Collective communication allows you to exchange data among a
group of processes

 It must involve all processes in the scope of a communicator

 The communicator argument in a collective communication routine
should specify which processes are involved in the communication

 Hence, it is the programmer's responsibility to ensure that all
processes within a communicator participate in any
collective operation
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Patterns of Collective 
Communication

 There are several patterns of collective communication:

1. Broadcast
2. Scatter
3. Gather
4. Allgather
5. Alltoall
6. Reduce
7. Allreduce
8. Scan
9. Reducescatter
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1. Broadcast

 Broadcast sends a message from the process with rank root to all
other processes in the group
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int MPI_Bcast ( void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm )
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2-3. Scatter and Gather

 Scatter distributes distinct messages from a single source task to
each task in the group

 Gather gathers distinct messages from each task in the group to a
single destination task
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int MPI_Scatter ( void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt, 
MPI_Datatype recvtype, int root, MPI_Comm comm ) 

Gather

int MPI_Gather ( void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcount, 
MPI_Datatype recvtype, int root, MPI_Comm comm )
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4. All Gather

 Allgather gathers data from all tasks and distribute them to all tasks.
Each task in the group, in effect, performs a one-to-all broadcasting
operation within the group
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int MPI_Allgather ( void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int 
recvcount, MPI_Datatype recvtype, MPI_Comm comm )
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5. All To All

 With Alltoall, each task in a group performs a scatter operation,
sending a distinct message to all the tasks in the group in order
by index

A0 A1 A2 A3
B0 B1 B2 B3
C0 C1 C2 C3
D0 D1 D2 D3

P0

P1

P2

P3

Data

P
ro

ce
ss

Alltoall

int MPI_Alltoall( void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcnt, 
MPI_Datatype recvtype, MPI_Comm comm )
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6-7. Reduce and All Reduce
 Reduce applies a reduction operation on all tasks in the group and places

the result in one task

 Allreduce applies a reduction operation and places the result in all tasks in
the group. This is equivalent to an MPI_Reduce followed by an MPI_Bcast
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Reduce

int MPI_Reduce ( void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int 
root, MPI_Comm comm )

int MPI_Allreduce ( void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, 
MPI_Comm comm ) 
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8. Scan
 Scan computes the scan (partial reductions) of data on a collection

of processes
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int MPI_Scan ( void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, 
MPI_Comm comm )
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9. Reduce Scatter
 Reduce Scatter combines values and scatters the results. It is equivalent to

an MPI_Reduce followed by an MPI_Scatter operation.

int MPI_Reduce_scatter ( void *sendbuf, void *recvbuf, int *recvcnts, MPI_Datatype datatype, MPI_Op 
op, MPI_Comm comm )
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Considerations and Restrictions

 Collective operations are blocking

 Collective communication routines do not take message
tag arguments

 Collective operations within subsets of processes are
accomplished by first partitioning the subsets into new groups
and then attaching the new groups to new communicators
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