
Cloud Computing
CS 15-319

Programming Models- Part II
Lecture 5, Jan 30, 2012

Majd F. Sakr and Mohammad Hammoud

Today…

 Last session
 Programming Models- Part I

 Today’s session
 Programming Models – Part II

 Announcement:
 Project update is due on Wednesday February 1st

2© Carnegie Mellon University in Qatar

Objectives

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface (MPI)

MapReduce

Pregel,
Dryad, and
GraphLab

Last Session

Message
Passing
Interface (MPI)

© Carnegie Mellon University in Qatar 3

Message Passing Interface

4

MPI

Basics Point-to-point
communication

Collective
communicationBasics

© Carnegie Mellon University in Qatar

What is MPI?
 The Message Passing Interface (MPI) is a message passing library

standard for writing message passing programs

 The goal of MPI is to establish a portable, efficient, and flexible
standard for message passing

 By itself, MPI is NOT a library - but rather the specification of what
such a library should be

 MPI is not an IEEE or ISO standard, but has in fact, become the
industry standard for writing message passing programs on
HPC platforms

5© Carnegie Mellon University in Qatar

Reasons for using MPI

6

Reason Description

Standardization MPI is the only message passing library which can be
considered a standard. It is supported on virtually all
HPC platforms

Reason Description

Standardization MPI is the only message passing library which can be
considered a standard. It is supported on virtually all
HPC platforms

Portability There is no need to modify your source code when you port
your application to a different platform that supports the
MPI standard

Reason Description

Standardization MPI is the only message passing library which can be
considered a standard. It is supported on virtually all
HPC platforms

Portability There is no need to modify your source code when you port
your application to a different platform that supports the
MPI standard

Performance Opportunities Vendor implementations should be able to exploit native
hardware features to optimize performance

Reason Description

Standardization MPI is the only message passing library which can be
considered a standard. It is supported on virtually all
HPC platforms

Portability There is no need to modify your source code when you port
your application to a different platform that supports the
MPI standard

Performance Opportunities Vendor implementations should be able to exploit native
hardware features to optimize performance

Functionality Over 115 routines are defined

Reason Description

Standardization MPI is the only message passing library which can be
considered a standard. It is supported on virtually all
HPC platforms

Portability There is no need to modify your source code when you port
your application to a different platform that supports the
MPI standard

Performance Opportunities Vendor implementations should be able to exploit native
hardware features to optimize performance

Functionality Over 115 routines are defined

Availability A variety of implementations are available, both vendor and
public domain

© Carnegie Mellon University in Qatar

What Programming Model?
 MPI is an example of a message passing programming model

 MPI is now used on just about any common parallel architecture
including MPP, SMP clusters, workstation clusters and
heterogeneous networks

 With MPI, the programmer is responsible for correctly identifying
parallelism and implementing parallel algorithms using
MPI constructs

7© Carnegie Mellon University in Qatar

Communicators and Groups
 MPI uses objects called communicators and groups to define which

collection of processes may communicate with each other to solve a
certain problem

 Most MPI routines require you to specify a communicator
as an argument

 The communicator MPI_COMM_WORLD is often used in calling
communication subroutines

 MPI_COMM_WORLD is the predefined communicator that includes
all of your MPI processes

8© Carnegie Mellon University in Qatar

Ranks
 Within a communicator, every process has its own unique, integer

identifier referred to as rank, assigned by the system when the
process initializes

 A rank is sometimes called a task ID. Ranks are contiguous and
begin at zero

 Ranks are used by the programmer to specify the source and
destination of messages

 Ranks are often also used conditionally by the application to control
program execution (e.g., if rank=0 do this / if rank=1 do that)

9© Carnegie Mellon University in Qatar

Multiple Communicators
 It is possible that a problem consists of several sub-problems where

each can be solved independently

 This type of application is typically found in the category of MPMD
coupled analysis

 We can create a new communicator for each sub-problem as a
subset of an existing communicator

 MPI allows you to achieve that by using MPI_COMM_SPLIT

10© Carnegie Mellon University in Qatar

Example of Multiple
Communicators

 Consider a problem with a fluid dynamics part and a structural
analysis part, where each part can be computed in parallel

Rank=0

Rank=0

Comm_Fluid

Rank=1

Rank=1

Rank=2

Rank=2

Rank=3

Rank=3

Rank=0

Rank=4

Comm_Struct

Rank=1

Rank=5

Rank=2

Rank=6

Rank=3

Rank=7

MPI_COMM_WORLD

 Ranks within MPI_COMM_WORLD are printed in red
 Ranks within Comm_Fluid are printed with green
 Ranks within Comm_Struct are printed with blue

© Carnegie Mellon University in Qatar 11

Message Passing Interface

12

MPI

Basics Point-to-point
communication

Collective
communicationBasics Point-to-point

communication

© Carnegie Mellon University in Qatar

Point-to-Point Communication

 MPI point-to-point operations typically involve message passing
between two, and only two, different MPI tasks

 One task performs a send operation
and the other performs a matching
receive operation

 Ideally, every send operation would be perfectly synchronized with
its matching receive

 This is rarely the case. Somehow or other, the MPI implementation
must be able to deal with storing data when the two tasks are
out of sync

13

Processor1 Processor2
Network

sendA

recvA

© Carnegie Mellon University in Qatar

Two Cases

 Consider the following two cases:

1. A send operation occurs 5 seconds before the
receive is ready - where is the message stored while
the receive is pending?

2. Multiple sends arrive at the same receiving task
which can only accept one send at a time - what
happens to the messages that are "backing up"?

14© Carnegie Mellon University in Qatar

Steps Involved in Point-to-Point
Communication

1. The data is copied
to the user buffer
by the user

2. The user calls one
of the MPI send
routines

3. The system copies
the data from the
user buffer to the
system buffer

4. The system sends
the data from the
system buffer to
the destination
process

1. The user calls one
of the MPI receive
routines

2. The system
receives the data
from the source
process and
copies it to the
system buffer

3. The system copies
data from the
system buffer to
the user buffer

4. The user uses
data in the user
buffer

sendbuf
sysbuf

Call a send routine

Now sendbuf can be
reused

Copying data from
sendbuf to sysbuf

Send data from
sysbuf to destination

recvbuf

sysbuf

Call a recev routine

Now recvbuf contains
valid data

Copying data from
sysbuf to recvbuf

Receive data from
source to sysbuf

Process 0
User Mode Kernel Mode

Process 1
User Mode Kernel Mode

1

2
3

4

Data

1 2

3

4

Sender

Receiver

© Carnegie Mellon University in Qatar 15

Blocking Send and Receive

 When we use point-to-point communication routines, we usually
distinguish between blocking and non-blocking communication

 A blocking send routine will only return after it is safe to modify the
application buffer for reuse

 Safe means that modifications will not affect
the data intended for the receive task

 This does not imply that the data was
actually received by the receiver- it may be
sitting in the system buffer at the sender side

16

Rank 0 Rank 1

sendbuf

recvbuf

recvbuf

sendbuf

Safe to modify
sendbuf

Network

© Carnegie Mellon University in Qatar

Blocking Send and Receive

 A blocking send can be:

1. Synchronous: Means there is a handshaking occurring with the
receive task to confirm a safe send

2. Asynchronous: Means the system buffer at the sender side is
used to hold the data for eventual delivery to the receiver

 A blocking receive only returns after the data has arrived (i.e.,
stored at the application recvbuf) and is ready for use by
the program

17© Carnegie Mellon University in Qatar

Non-Blocking Send and Receive (1)

 Non-blocking send and non-blocking receive routines
behave similarly

 They return almost immediately

 They do not wait for any communication events to complete
such as:

 Message copying from user buffer to system buffer
 Or the actual arrival of a message

18© Carnegie Mellon University in Qatar

Non-Blocking Send and Receive (2)

 However, it is unsafe to modify the application buffer until you make
sure that the requested non-blocking operation was actually
performed by the library

 If you use the application buffer before the copy completes:

 Incorrect data may be copied to the system buffer
(in case of non-blocking send)

 Or your receive buffer does not contain what you want
(in case of non-blocking receive)

 You can make sure of the completion of the copy by
using MPI_WAIT() after the send or receive operations

19© Carnegie Mellon University in Qatar

Why Non-Blocking Communication?

 Why do we use non-blocking communication despite
its complexity?

 Non-blocking communication is generally faster than its
corresponding blocking communication

 We can overlap computations while the system is copying data
back and forth between application and system buffers

20© Carnegie Mellon University in Qatar

MPI Point-To-Point Communication
Routines

21

Routine Signature

Blocking send int MPI_Send(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm)

Non-blocking send int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request)

Blocking receive int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

Non-blocking receive int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request)

Routine Signature

Blocking send int MPI_Send(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm)

Non-blocking send int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request)

Blocking receive int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

Non-blocking receive int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request)

Routine Signature

Blocking send int MPI_Send(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm)

Non-blocking send int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request)

Blocking receive int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

Non-blocking receive int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request)

Routine Signature

Blocking send int MPI_Send(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm)

Non-blocking send int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request)

Blocking receive int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

Non-blocking receive int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request)

Routine Signature

Blocking send int MPI_Send(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm)

Non-blocking send int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request)

Blocking receive int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

Non-blocking receive int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request)

© Carnegie Mellon University in Qatar

MPI Example: Adding Array
Elements

#include <stdio.h>
#include <mpi.h>

#define array_size 20
#define num_elem_pp 10
#define tag1 1
#define tag2 2

int array_send[array_size];
int array_recv[num_elem_pp];

int main(int argc, char **argv){

int myPID;
int num_procs;
int sum = 0;
int partial_sum = 0;
double startTime = 0.0;
double endTime;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myPID);
MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if(myPID == 0)
{

startTime = MPI_Wtime();

Initialize MPI environment

The Master

© Carnegie Mellon University in Qatar 22

MPI Example: Adding Array
Elements

int i;
for(i= 0; i < array_size; i++)

array_send[i] = i;

int j;
for(j = 1; j < num_procs; j++){

int start_elem = j * num_elem_pp;
int end_elem = start_elem + num_elem_pp;

MPI_Send(&array_send[start_elem], num_elem_pp, MPI_INT, j, tag1,
MPI_COMM_WORLD);

}

int k;
for(k=0; k < num_elem_pp; k++)

sum += array_send[k];

int l;
for(l = 1; l < num_procs; l++){

MPI_Recv(&partial_sum, 1, MPI_INT, MPI_ANY_SOURCE, tag2,
MPI_COMM_WORLD, &status);

printf("Partial sum received from process %d = %d\n", l, status.MPI_SOURCE);
sum += partial_sum;

}

The Master allocates equal portions of the
array to each process

The Master calculates its partial sum

The Master
collects all
partial sums
from all
processes and
calculates a
grand total

© Carnegie Mellon University in Qatar 23

MPI Example: Adding Array
Elements

endTime = MPI_Wtime();
printf("Grand Sum = %d and time taken = %f\n", sum, (endTime-startTime));

}else{

MPI_Recv(&array_recv, num_elem_pp, MPI_INT, 0, tag1, MPI_COMM_WORLD, &status);

int i;
for(i = 0; i < num_elem_pp; i++)

partial_sum += array_recv[i];

MPI_Send(&partial_sum, 1, MPI_INT, 0, tag2, MPI_COMM_WORLD);

}

MPI_Finalize();

}

The Slave receives its array share

The Slave
calculates its
partial sum

The Slave sends to the Master its partial sum

Terminate the MPI execution environment

The Slave

© Carnegie Mellon University in Qatar 24

Unidirectional Communication

 When you send a message from process 0 to process 1, there are
four combinations of MPI subroutines to choose from

1. Blocking send and blocking receive

2. Non-blocking send and blocking receive

3. Blocking send and non-blocking receive

4. Non-blocking send and non-blocking receive

25

Rank 0 Rank 1

sendbuf

recvbuf

recvbuf

sendbuf

© Carnegie Mellon University in Qatar

Bidirectional Communication

 When two processes exchange data with each other, there are
essentially 3 cases to consider:

 Case 1: Both processes call the send
routine first, and then receive

 Case 2: Both processes call the receive
routine first, and then send

 Case 3: One process calls send and receive routines in this order, and
the other calls them in the opposite order

26

Rank 0 Rank 1

sendbuf

recvbuf

recvbuf

sendbuf

© Carnegie Mellon University in Qatar

Bidirectional Communication-
Deadlocks

 With bidirectional communication, we have to be careful
about deadlocks

 When a deadlock occurs, processes
involved in the deadlock will not proceed
any further

 Deadlocks can take place:

1. Either due to the incorrect order of send and receive
2. Or due to the limited size of the system buffer

27

Rank 0 Rank 1

sendbuf

recvbuf

recvbuf

sendbuf

© Carnegie Mellon University in Qatar

Case 1. Send First and Then Receive

 Consider the following two snippets of pseudo-code:

 MPI_ISEND immediately followed by MPI_WAIT is logically
equivalent to MPI_SEND

28

IF (myrank==0) THEN
CALL MPI_SEND(sendbuf, …)
CALL MPI_RECV(recvbuf, …)

ELSEIF (myrank==1) THEN
CALL MPI_SEND(sendbuf, …)
CALL MPI_RECV(recvbuf, …)

ENDIF

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, …, ireq, …)
CALL MPI_WAIT(ireq, …)
CALL MPI_RECV(recvbuf, …)

ELSEIF (myrank==1) THEN
CALL MPI_ISEND(sendbuf, …, ireq, …)
CALL MPI_WAIT(ireq, …)
CALL MPI_RECV(recvbuf, …)

ENDIF

© Carnegie Mellon University in Qatar

Case 1. Send First and Then Receive

 What happens if the system buffer is larger than the send buffer?

 What happens if the system buffer is smaller than the
send buffer?

Rank 0 Rank 1
sendbuf

sysbuf

sendbuf

sysbuf

recvbuf recvbuf

Network

Rank 0 Rank 1
sendbuf

sysbuf

sendbuf

sysbuf

recvbuf recvbuf

Network

DEADLOCK!

© Carnegie Mellon University in Qatar 29

Case 1. Send First and Then Receive

 Consider the following pseudo-code:

 The code is free from deadlock because:
 The program immediately returns from MPI_ISEND and starts receiving

data from the other process
 In the meantime, data transmission is completed and the calls of MPI_WAIT

for the completion of send at both processes do not lead to a deadlock

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, …, ireq, …)
CALL MPI_RECV(recvbuf, …)
CALL MPI_WAIT(ireq, …)

ELSEIF (myrank==1) THEN
CALL MPI_ISEND(sendbuf, …, ireq, …)
CALL MPI_RECV(recvbuf, …)
CALL MPI_WAIT(ireq, …)

ENDIF

© Carnegie Mellon University in Qatar 30

Case 2. Receive First and Then Send

 Would the following pseudo-code lead to a deadlock?

 A deadlock will occur regardless of how much system buffer we have

 What if we use MPI_ISEND instead of MPI_SEND?

 Deadlock still occurs

IF (myrank==0) THEN
CALL MPI_RECV(recvbuf, …)
CALL MPI_SEND(sendbuf, …)

ELSEIF (myrank==1) THEN
CALL MPI_RECV(recvbuf, …)
CALL MPI_ISEND(sendbuf, …)

ENDIF

© Carnegie Mellon University in Qatar 31

Case 2. Receive First and Then Send

 What about the following pseudo-code?

 It can be safely executed

IF (myrank==0) THEN
CALL MPI_IRECV(recvbuf, …, ireq, …)
CALL MPI_SEND(sendbuf, …)
CALL MPI_WAIT(ireq, …)

ELSEIF (myrank==1) THEN
CALL MPI_IRECV(recvbuf, …, ireq, …)
CALL MPI_SEND(sendbuf, …)
CALL MPI_WAIT(ireq, …)

ENDIF

© Carnegie Mellon University in Qatar 32

Case 3. One Process Sends and
Receives; the other Receives and Sends
 What about the following code?

 It is always safe to order the calls of MPI_(I)SEND and
MPI_(I)RECV at the two processes in an opposite order

 In this case, we can use either blocking or non-blocking subroutines

IF (myrank==0) THEN
CALL MPI_SEND(sendbuf, …)
CALL MPI_RECV(recvbuf, …)

ELSEIF (myrank==1) THEN
CALL MPI_RECV(recvbuf, …)
CALL MPI_SEND(sendbuf, …)

ENDIF

© Carnegie Mellon University in Qatar 33

A Recommendation

 Considering the previous options, performance, and the avoidance
of deadlocks, it is recommended to use the following code:

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, …, ireq1, …)
CALL MPI_IRECV(recvbuf, …, ireq2, …)

ELSEIF (myrank==1) THEN
CALL MPI_ISEND(sendbuf, …, ireq1, …)
CALL MPI_IRECV(recvbuf, …, ireq2, …)

ENDIF
CALL MPI_WAIT(ireq1, …)
CALL MPI_WAIT(ireq2, …)

© Carnegie Mellon University in Qatar 34

Message Passing Interface

35

MPI

Basics Point-to-point
communication

Collective
communicationBasics Collective
communication

© Carnegie Mellon University in Qatar

Collective Communication

 Collective communication allows you to exchange data among a
group of processes

 It must involve all processes in the scope of a communicator

 The communicator argument in a collective communication routine
should specify which processes are involved in the communication

 Hence, it is the programmer's responsibility to ensure that all
processes within a communicator participate in any
collective operation

36© Carnegie Mellon University in Qatar

Patterns of Collective
Communication

 There are several patterns of collective communication:

1. Broadcast
2. Scatter
3. Gather
4. Allgather
5. Alltoall
6. Reduce
7. Allreduce
8. Scan
9. Reducescatter

37© Carnegie Mellon University in Qatar

1. Broadcast

 Broadcast sends a message from the process with rank root to all
other processes in the group

38

AP0

P1

P2

P3

Data

P
ro

ce
ss

Broadcast A
A
A
A

P0

P1

P2

P3

Data

P
ro

ce
ss

int MPI_Bcast (void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

© Carnegie Mellon University in Qatar

2-3. Scatter and Gather

 Scatter distributes distinct messages from a single source task to
each task in the group

 Gather gathers distinct messages from each task in the group to a
single destination task

A B C DP0

P1

P2

P3

Data

P
ro

ce
ss

Scatter A
B
C
D

P0

P1

P2

P3

Data

P
ro

ce
ss

int MPI_Scatter (void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Gather

int MPI_Gather (void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

© Carnegie Mellon University in Qatar 39

4. All Gather

 Allgather gathers data from all tasks and distribute them to all tasks.
Each task in the group, in effect, performs a one-to-all broadcasting
operation within the group

A
B
C
D

P0

P1

P2

P3

Data

P
ro

ce
ss

allgather A B C D
A B C D
A B C D
A B C D

P0

P1

P2

P3

Data

P
ro

ce
ss

int MPI_Allgather (void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int
recvcount, MPI_Datatype recvtype, MPI_Comm comm)

© Carnegie Mellon University in Qatar 40

5. All To All

 With Alltoall, each task in a group performs a scatter operation,
sending a distinct message to all the tasks in the group in order
by index

A0 A1 A2 A3
B0 B1 B2 B3
C0 C1 C2 C3
D0 D1 D2 D3

P0

P1

P2

P3

Data

P
ro

ce
ss

Alltoall

int MPI_Alltoall(void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcnt,
MPI_Datatype recvtype, MPI_Comm comm)

A0 B0 C0 D0
A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3

P0

P1

P2

P3

Data

P
ro

ce
ss

© Carnegie Mellon University in Qatar 41

6-7. Reduce and All Reduce
 Reduce applies a reduction operation on all tasks in the group and places

the result in one task

 Allreduce applies a reduction operation and places the result in all tasks in
the group. This is equivalent to an MPI_Reduce followed by an MPI_Bcast

A
B
C
D

P0

P1

P2

P3

Data

P
ro

ce
ss

Reduce

int MPI_Reduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int
root, MPI_Comm comm)

int MPI_Allreduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

A*B*C*DP0

P1

P2

P3

Data

P
ro

ce
ss A

B
C
D

P0

P1

P2

P3

Data

P
ro

ce
ss

Allreduce A*B*C*D
A*B*C*D
A*B*C*D
A*B*C*D

P0

P1

P2

P3

Data

P
ro

ce
ss

© Carnegie Mellon University in Qatar 42

8. Scan
 Scan computes the scan (partial reductions) of data on a collection

of processes

A
B
C
D

P0

P1

P2

P3

Data
P

ro
ce

ss

Scan

int MPI_Scan (void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

P0

P1

P2

P3

Data

P
ro

ce
ss A

A*B
A*B*C
A*B*C*D

© Carnegie Mellon University in Qatar 43

9. Reduce Scatter
 Reduce Scatter combines values and scatters the results. It is equivalent to

an MPI_Reduce followed by an MPI_Scatter operation.

int MPI_Reduce_scatter (void *sendbuf, void *recvbuf, int *recvcnts, MPI_Datatype datatype, MPI_Op
op, MPI_Comm comm)

Reduce
Scatter

A0*B0*C0*D0
A1*B1*C1*D1
A2*B2*C2*D2
A3*B3*C3*D3

P0

P1

P2

P3

Data

P
ro

ce
ssA0 A1 A2 A3

B0 B1 B2 B3
C0 C1 C2 C3
D0 D1 D2 D3

P0

P1

P2

P3

Data

P
ro

ce
ss

© Carnegie Mellon University in Qatar 44

Considerations and Restrictions

 Collective operations are blocking

 Collective communication routines do not take message
tag arguments

 Collective operations within subsets of processes are
accomplished by first partitioning the subsets into new groups
and then attaching the new groups to new communicators

45© Carnegie Mellon University in Qatar

Next Class

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface (MPI)

MapReduce

Pregel,
Dryad, and
GraphLab

Programming Models- Part III

© Carnegie Mellon University in Qatar 46

