
Cloud Computing
CS 15-319

Programming Models- Part III
Lecture 6, Feb 1, 2012

Majd F. Sakr and Mohammad Hammoud

1© Carnegie Mellon University in Qatar



Today…

 Last session
 Programming Models- Part II

 Today’s session
 Programming Models – Part III

 Announcement:
 Project update is due today

2© Carnegie Mellon University in Qatar



Objectives

Discussion on Programming Models

Why 
parallelism?

Parallel 
computer 
architectures

Traditional 
models of 
parallel 
programming

Examples of 
parallel 
processing

Message 
Passing 
Interface (MPI)

MapReduce

Pregel, 
Dryad, and 
GraphLab

Last 2 Sessions

MapReduce

© Carnegie Mellon University in Qatar 3



MapReduce
 In this part, the following concepts of MapReduce will

be described:

 Basics
 A close look at MapReduce data flow
 Additional functionality
 Scheduling and fault-tolerance in MapReduce
 Comparison with existing techniques and models

4© Carnegie Mellon University in Qatar



MapReduce
 In this part, the following concepts of MapReduce will

be described:

 Basics
 A close look at MapReduce data flow
 Additional functionality
 Scheduling and fault-tolerance in MapReduce
 Comparison with existing techniques and models

5© Carnegie Mellon University in Qatar



Problem Scope
 MapReduce is a programming model for data processing

 The power of MapReduce lies in its ability to scale to 100s or 1000s
of computers, each with several processor cores

 How large an amount of work?

 Web-scale data on the order of 100s of GBs to TBs or PBs

 It is likely that the input data set will not fit on a single computer’s
hard drive

 Hence, a distributed file system (e.g., Google File System- GFS) is
typically required

6© Carnegie Mellon University in Qatar



Commodity Clusters
 MapReduce is designed to efficiently process large volumes

of data by connecting many commodity computers together to
work in parallel

 A theoretical 1000-CPU machine would cost a very large
amount of money, far more than 1000 single-CPU or 250
quad-core machines

 MapReduce ties smaller and more reasonably priced
machines together into a single cost-effective
commodity cluster

7© Carnegie Mellon University in Qatar



Isolated Tasks
 MapReduce divides the workload into multiple independent tasks

and schedule them across cluster nodes

 A work performed by each task is done in isolation from one another

 The amount of communication which can be performed by tasks is
mainly limited for scalability and fault tolerance reasons

 The communication overhead required to keep the data on the nodes
synchronized at all times would prevent the model from performing reliably and
efficiently at large scale

8© Carnegie Mellon University in Qatar



Data Distribution
 In a MapReduce cluster, data is distributed to all the nodes of the

cluster as it is being loaded in

 An underlying distributed file systems (e.g., GFS) splits large data
files into chunks which are managed by different nodes in the cluster

 Even though the file chunks are distributed across several
machines, they form a single namesapce

9

Input data: A large file

Node 1

Chunk of input data

Node 2

Chunk of input data

Node 3

Chunk of input data

© Carnegie Mellon University in Qatar



MapReduce: A Bird’s-Eye View
 In MapReduce, chunks are processed in 

isolation by tasks called Mappers

 The outputs from the mappers are denoted as 
intermediate outputs (IOs) and are brought 
into a second set of tasks called Reducers

 The process of bringing together IOs into a set 
of Reducers is known as shuffling process

 The Reducers produce the final outputs (FOs)

 Overall, MapReduce breaks the data flow into two phases, 
map phase and reduce phase

C0 C1 C2 C3

M0 M1 M2 M3

IO0 IO1 IO2 IO3

R0 R1

FO0 FO1

chunks

mappers

Reducers

M
ap

 P
ha

se
R

ed
uc

e 
Ph

as
e

Shuffling Data

© Carnegie Mellon University in Qatar 10



Keys and Values
 The programmer in MapReduce has to specify two functions, the

map function and the reduce function that implement the Mapper
and the Reducer in a MapReduce program

 In MapReduce data elements are always structured as
key-value (i.e., (K, V)) pairs

 The map and reduce functions receive and emit (K, V) pairs

(K, V) 
Pairs

Map 
Function

(K’, V’) 
Pairs

Reduce 
Function

(K’’, V’’) 
Pairs

Input Splits Intermediate Outputs Final Outputs

© Carnegie Mellon University in Qatar 11



Partitions
 In MapReduce, intermediate output values are not usually

reduced together

 All values with the same key are presented to a single
Reducer together

 More specifically, a different subset of intermediate key space is
assigned to each Reducer

 These subsets are known as partitions
Different colors represent 
different keys (potentially) 
from different Mappers

Partitions are the input to Reducers
© Carnegie Mellon University in Qatar 12



Network Topology In MapReduce

 MapReduce assumes a tree style network topology

 Nodes are spread over different racks embraced in one or many data centers 

 A salient point is that the bandwidth between two nodes is dependent on their 
relative locations in the network topology

 For example, nodes that are on the same rack will have higher bandwidth 
between them as opposed to nodes that are off-rack

© Carnegie Mellon University in Qatar 13



MapReduce
 In this part, the following concepts of MapReduce will

be described:

 Basics
 A close look at MapReduce data flow
 Additional functionality
 Scheduling and fault-tolerance in MapReduce
 Comparison with existing techniques and models

14© Carnegie Mellon University in Qatar



Hadoop
 Since its debut on the computing stage, MapReduce has 

frequently been associated with Hadoop

 Hadoop is an open source implementation of MapReduce and 
is currently enjoying wide popularity

 Hadoop presents MapReduce as an analytics engine and 
under the hood uses a distributed storage layer referred to as 
Hadoop Distributed File System (HDFS)

 HDFS mimics Google File System (GFS)

15© Carnegie Mellon University in Qatar



Hadoop MapReduce: A Closer Look

file

file

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Files loaded from local HDFS store

RecordReaders

Final (K, V) pairs

Writeback to local 
HDFS store

file

file

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Files loaded from local HDFS store

RecordReaders

Final (K, V) pairs

Writeback to local 
HDFS store

Node 1 Node 2

Shuffling 
Process

Intermediate 
(K,V) pairs 

exchanged by 
all nodes

© Carnegie Mellon University in Qatar 16



Input Files
 Input files are where the data for a MapReduce task is

initially stored

 The input files typically reside in a distributed file system
(e.g. HDFS)

 The format of input files is arbitrary

 Line-based log files
 Binary files
 Multi-line input records
 Or something else entirely

17

file

file

© Carnegie Mellon University in Qatar



InputFormat
 How the input files are split up and read is defined by

the InputFormat

 InputFormat is a class that does the following:

 Selects the files that should be used 
for input

 Defines the InputSplits that break 
a file

 Provides a factory for RecordReader objects that
read the file

18

file

file

InputFormat

Files loaded from local HDFS store

© Carnegie Mellon University in Qatar



InputFormat Types
 Several InputFormats are provided with Hadoop:

19

InputFormat Description Key Value
TextInputFormat Default format; 

reads lines of text 
files

The byte offset 
of the line

The line contents

KeyValueInputFormat Parses lines into 
(K, V) pairs

Everything up 
to the first tab 
character

The remainder of 
the line

SequenceFileInputFormat A Hadoop-specific 
high-performance 
binary format

user-defined user-defined

InputFormat Description Key Value
TextInputFormat Default format; 

reads lines of text 
files

The byte offset 
of the line

The line contents

KeyValueInputFormat Parses lines into 
(K, V) pairs

Everything up 
to the first tab 
character

The remainder of 
the line

SequenceFileInputFormat A Hadoop-specific 
high-performance 
binary format

user-defined user-defined

InputFormat Description Key Value
TextInputFormat Default format; 

reads lines of text 
files

The byte offset 
of the line

The line contents

KeyValueInputFormat Parses lines into 
(K, V) pairs

Everything up 
to the first tab 
character

The remainder of 
the line

SequenceFileInputFormat A Hadoop-specific 
high-performance 
binary format

user-defined user-defined

InputFormat Description Key Value
TextInputFormat Default format; 

reads lines of text 
files

The byte offset 
of the line

The line contents

KeyValueInputFormat Parses lines into 
(K, V) pairs

Everything up 
to the first tab 
character

The remainder of 
the line

SequenceFileInputFormat A Hadoop-specific 
high-performance 
binary format

user-defined user-defined

© Carnegie Mellon University in Qatar



Input Splits
 An input split describes a unit of work that comprises a single map

task in a MapReduce program

 By default, the InputFormat breaks a file up into 64MB splits

 By dividing the file into splits, we allow 
several map tasks to operate on a single 
file in parallel

 If the file is very large, this can improve 
performance significantly through parallelism

 Each map task corresponds to a single input split

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

© Carnegie Mellon University in Qatar 20



RecordReader
 The input split defines a slice of work but does not describe how

to access it

 The RecordReader class actually loads data from its source and
converts it into (K, V) pairs suitable for reading by Mappers

 The RecordReader is invoked repeatedly 
on the input until the entire split is consumed

 Each invocation of the RecordReader leads 
to another call of the map function defined 
by the programmer

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

© Carnegie Mellon University in Qatar 21



Mapper and Reducer
 The Mapper performs the user-defined work of the first phase of the

MapReduce program

 A new instance of Mapper is created for each split

 The Reducer performs the user-defined work of 
the second phase of the MapReduce program

 A new instance of Reducer is created for each partition

 For each key in the partition assigned to a Reducer, the 
Reducer is called once

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

© Carnegie Mellon University in Qatar 22



Partitioner
 Each mapper may emit (K, V) pairs to any partition

 Therefore, the map nodes must all agree on 
where to send different pieces of 
intermediate data

 The partitioner class determines which 
partition a given (K,V) pair will go to

 The default partitioner computes a hash value for a 
given key and assigns it to a partition based on 
this result

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

© Carnegie Mellon University in Qatar 23



Sort
 Each Reducer is responsible for reducing 

the values associated with (several) 
intermediate keys

 The set of intermediate keys on a single 
node is automatically sorted by 
MapReduce before they are presented 
to the Reducer

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

© Carnegie Mellon University in Qatar 24



OutputFormat
 The OutputFormat class defines the way (K,V) pairs 

produced by Reducers are written to output files

 The instances of OutputFormat provided by 
Hadoop write to files on the local disk or in HDFS

 Several OutputFormats are provided by Hadoop:

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

OutputFormat

OutputFormat Description
TextOutputFormat Default; writes lines in "key \t 

value" format

SequenceFileOutputFormat Writes binary files suitable for 
reading into subsequent 
MapReduce jobs

NullOutputFormat Generates no output files

OutputFormat Description
TextOutputFormat Default; writes lines in "key \t 

value" format

SequenceFileOutputFormat Writes binary files suitable for 
reading into subsequent 
MapReduce jobs

NullOutputFormat Generates no output files

OutputFormat Description
TextOutputFormat Default; writes lines in "key \t 

value" format

SequenceFileOutputFormat Writes binary files suitable for 
reading into subsequent 
MapReduce jobs

NullOutputFormat Generates no output files

OutputFormat Description
TextOutputFormat Default; writes lines in "key \t 

value" format

SequenceFileOutputFormat Writes binary files suitable for 
reading into subsequent 
MapReduce jobs

NullOutputFormat Generates no output files

© Carnegie Mellon University in Qatar 25



MapReduce
 In this part, the following concepts of MapReduce will

be described:

 Basics
 A close look at MapReduce data flow
 Additional functionality
 Scheduling and fault-tolerance in MapReduce
 Comparison with existing techniques and models

26© Carnegie Mellon University in Qatar



Combiner Functions
 MapReduce applications are limited by the bandwidth available

on the cluster
 It pays to minimize the data shuffled between map and reduce tasks
 Hadoop allows the user to specify a combiner function (just like the reduce

function) to be run on a map output

MT

MT

MT

MT

MT

MT

RT
LEGEND:

•R = Rack
•N = Node
•MT = Map Task
•RT = Reduce Task
•Y = Year
•T = Temperature

MT
(1950, 0)
(1950, 20)
(1950, 10)

(1950, 20)

Map 
output

Combiner
output

N

N

R

N

N

R

(Y, T)

© Carnegie Mellon University in Qatar 27



MapReduce
 In this part, the following concepts of MapReduce will

be described:

 Basics
 A close look at MapReduce data flow
 Additional functionality
 Scheduling and fault-tolerance in MapReduce
 Comparison with existing techniques and models

28© Carnegie Mellon University in Qatar



Task Scheduling in MapReduce
 MapReduce adopts a master-slave architecture

 The master node in MapReduce is referred 
to as Job Tracker (JT)

 Each slave node in MapReduce is referred 
to as Task Tracker (TT)

 MapReduce adopts a pull scheduling strategy rather than 
a push one 

 I.e., JT does not push map and reduce tasks to TTs but rather TTs pull 
them by making pertaining requests

29

JT

T0 T1 T2

Tasks Queue

TT
Task Slots

TT
Task Slots

T0 T1

© Carnegie Mellon University in Qatar



Map and Reduce Task Scheduling

 Every TT sends a heartbeat message periodically to JT
encompassing a request for a map or a reduce task to run

I. Map Task Scheduling:

 JT satisfies requests for map tasks via attempting to schedule mappers
in the vicinity of their input splits (i.e., it considers locality)

II. Reduce Task Scheduling:

 However, JT simply assigns the next yet-to-run reduce task to a
requesting TT regardless of TT’s network location and its implied effect
on the reducer’s shuffle time (i.e., it does not consider locality)

30© Carnegie Mellon University in Qatar



Job Scheduling in MapReduce

 In MapReduce, an application is represented as a job

 A job encompasses multiple map and reduce tasks

 MapReduce in Hadoop comes with a choice of schedulers:

 The default is the FIFO scheduler which schedules jobs
in order of submission

 There is also a multi-user scheduler called the Fair scheduler which
aims to give every user a fair share of the cluster
capacity over time

31© Carnegie Mellon University in Qatar



Fault Tolerance in Hadoop
 MapReduce can guide jobs toward a successful completion even when jobs

are run on a large cluster where probability of failures increases

 The primary way that MapReduce achieves fault tolerance is through
restarting tasks

 If a TT fails to communicate with JT for a period of time (by default, 1 minute
in Hadoop), JT will assume that TT in question has crashed

 If the job is still in the map phase, JT asks another TT to re-execute all
Mappers that previously ran at the failed TT

 If the job is in the reduce phase, JT asks another TT to re-execute all
Reducers that were in progress on the failed TT

32© Carnegie Mellon University in Qatar



Speculative Execution

 A MapReduce job is dominated by the slowest task

 MapReduce attempts to locate slow tasks (stragglers) and run
redundant (speculative) tasks that will optimistically commit before
the corresponding stragglers

 This process is known as speculative execution

 Only one copy of a straggler is allowed to be speculated

 Whichever copy (among the two copies) of a task commits first, it
becomes the definitive copy, and the other copy is killed by JT

© Carnegie Mellon University in Qatar 33



Locating Stragglers

 How does Hadoop locate stragglers?

 Hadoop monitors each task progress using a progress score
between 0 and 1

 If a task’s progress score is less than (average – 0.2), and the task
has run for at least 1 minute, it is marked as a straggler

PS= 2/3

PS= 1/12

 Not a stragglerT1

T2

Time

A straggler

© Carnegie Mellon University in Qatar 34



MapReduce
 In this part, the following concepts of MapReduce will

be described:

 Basics
 A close look at MapReduce data flow
 Additional functionality
 Scheduling and fault-tolerance in MapReduce
 Comparison with existing techniques and models

35© Carnegie Mellon University in Qatar



Comparison with Existing Techniques-
Condor (1)

 Performing computation on large volumes of data has been done
before, usually in a distributed setting by using Condor (for instance)

 Condor is a specialized workload management system for
compute-intensive jobs

 Users submit their serial or parallel jobs to Condor and Condor:

 Places them into a queue
 Chooses when and where to run the jobs based upon a policy
 Carefully monitors their progress, and ultimately informs the

user upon completion

36© Carnegie Mellon University in Qatar



Comparison with Existing Techniques-
Condor (2)

 Condor does not automatically distribute data

 A separate storage area network (SAN) is typically incorporated in
addition to the compute cluster

 Furthermore, collaboration between multiple compute nodes must 
be managed with a message 
passing system such as MPI

 Condor is not easy to work with 
and can lead to the introduction 
of subtle errors

37

Compute 
Node

Compute 
Node

Compute 
Node

Compute 
Node

LAN

File Server

Database 
Server

SAN

© Carnegie Mellon University in Qatar



What Makes MapReduce Unique?

 MapReduce is characterized by:

1. Its simplified programming model which allows the user to
quickly write and test distributed systems

2. Its efficient and automatic distribution of data and workload
across machines

3. Its flat scalability curve. Specifically, after a Mapreduce program
is written and functioning on 10 nodes, very little-if any- work is
required for making that same program run on 1000 nodes

4. Its fault tolerance approach

38© Carnegie Mellon University in Qatar



Comparison With Traditional Models

39

Aspect Shared Memory Message 
Passing

MapReduce

Communication Implicit (via 
loads/stores)

Explicit Messages Limited and Implicit

Synchronization Explicit Implicit (via 
messages)

Immutable (K, V) 
Pairs

Hardware Support Typically Required None None

Development Effort Lower Higher Lowest

Tuning Effort Higher Lower Lowest

Aspect Shared Memory Message 
Passing

MapReduce

Communication Implicit (via 
loads/stores)

Explicit Messages Limited and Implicit

Synchronization Explicit Implicit (via 
messages)

Immutable (K, V) 
Pairs

Hardware Support Typically Required None None

Development Effort Lower Higher Lowest

Tuning Effort Higher Lower Lowest

Aspect Shared Memory Message 
Passing

MapReduce

Communication Implicit (via 
loads/stores)

Explicit Messages Limited and Implicit

Synchronization Explicit Implicit (via 
messages)

Immutable (K, V) 
Pairs

Hardware Support Typically Required None None

Development Effort Lower Higher Lowest

Tuning Effort Higher Lower Lowest

Aspect Shared Memory Message 
Passing

MapReduce

Communication Implicit (via 
loads/stores)

Explicit Messages Limited and Implicit

Synchronization Explicit Implicit (via 
messages)

Immutable (K, V) 
Pairs

Hardware Support Typically Required None None

Development Effort Lower Higher Lowest

Tuning Effort Higher Lower Lowest

Aspect Shared Memory Message 
Passing

MapReduce

Communication Implicit (via 
loads/stores)

Explicit Messages Limited and Implicit

Synchronization Explicit Implicit (via 
messages)

Immutable (K, V) 
Pairs

Hardware Support Typically Required None None

Development Effort Lower Higher Lowest

Tuning Effort Higher Lower Lowest

Aspect Shared Memory Message 
Passing

MapReduce

Communication Implicit (via 
loads/stores)

Explicit Messages Limited and Implicit

Synchronization Explicit Implicit (via 
messages)

Immutable (K, V) 
Pairs

Hardware Support Typically Required None None

Development Effort Lower Higher Lowest

Tuning Effort Higher Lower Lowest

© Carnegie Mellon University in Qatar



Next Class

Discussion on Programming Models

Why 
parallelism?

Parallel 
computer 
architectures

Traditional 
models of 
parallel 
programming

Examples of 
parallel 
processing

Message 
Passing 
Interface (MPI)

MapReduce

Pregel, 
Dryad, and 
GraphLab

Programming Models- Part IV

© Carnegie Mellon University in Qatar 40


