Cloud Computing CS 15-319

Programming Models- Part III Lecture 6, Feb 1, 2012

Majd F. Sakr and Mohammad Hammoud

حامعة کارنیدی سلون فی قطر **Carnegie Mellon Qatar**

© Carnegie Mellon University in Qatar

- Last session
 - Programming Models- Part II
- Today's session
 - Programming Models Part III
- Announcement:
 - Project update is due today

© Carnegie Mellon University in Qatar

Objectives

MapReduce

- In this part, the following concepts of MapReduce will be described:
 - Basics
 - A close look at MapReduce data flow
 - Additional functionality
 - Scheduling and fault-tolerance in MapReduce
 - Comparison with existing techniques and models

MapReduce

In this part, the following concepts of MapReduce will be described:

Basics

- A close look at MapReduce data flow
- Additional functionality
- Scheduling and fault-tolerance in MapReduce
- Comparison with existing techniques and models

Problem Scope

- MapReduce is a programming model for data processing
- The power of MapReduce lies in its ability to scale to 100s or 1000s of computers, each with several processor cores
- How large an amount of work?
 - Web-scale data on the order of 100s of GBs to TBs or PBs
 - It is likely that the input data set will not fit on a single computer's hard drive
 - Hence, a distributed file system (e.g., Google File System- GFS) is typically required

© Carnegie Mellon University in Qatar

Carnegie Mellon Qatar

Commodity Clusters

- MapReduce is designed to efficiently process large volumes of data by connecting many commodity computers together to work in parallel
- A theoretical 1000-CPU machine would cost a very large amount of money, far more than 1000 single-CPU or 250 quad-core machines
- MapReduce ties smaller and more reasonably priced machines together into a single cost-effective commodity cluster

حامعة کارنیدی سلوں فی قطر **Carnegie Mellon Qatar**

Isolated Tasks

- MapReduce divides the workload into multiple *independent tasks* and schedule them across cluster nodes
- A work performed by each task is done *in isolation* from one another
- The amount of communication which can be performed by tasks is mainly limited for scalability and fault tolerance reasons
 - The communication overhead required to keep the data on the nodes synchronized at all times would prevent the model from performing reliably and efficiently at large scale

حامجة کارنیدی میلمد فی قطر Carnegie Mellon Qatar

Data Distribution

- In a MapReduce cluster, data is distributed to all the nodes of the cluster as it is being loaded in
- An underlying distributed file systems (e.g., GFS) splits large data files into chunks which are managed by different nodes in the cluster

MapReduce: A Bird's-Eye View

- In MapReduce, chunks are processed in isolation by tasks called *Mappers*
- The outputs from the mappers are denoted as intermediate outputs (IOs) and are brought into a second set of tasks called *Reducers*
- The process of bringing together IOs into a set of Reducers is known as shuffling process
- The Reducers produce the final outputs (FOs)
- Overall, MapReduce breaks the data flow into two phases, map phase and reduce phase

Keys and Values

- The programmer in MapReduce has to specify two functions, the map function and the reduce function that implement the Mapper and the Reducer in a MapReduce program
- In MapReduce data elements are always structured as key-value (i.e., (K, V)) pairs
- The map and reduce functions receive and emit (K, V) pairs

Partitions

- In MapReduce, intermediate output values are not usually reduced together
- All values with the same key are presented to a single Reducer together
- More specifically, a different subset of intermediate key space is assigned to each Reducer
- These subsets are known as *partitions*

Network Topology In MapReduce

- MapReduce assumes a tree style network topology
- Nodes are spread over different racks embraced in one or many data centers
- A salient point is that the bandwidth between two nodes is dependent on their relative locations in the network topology
- For example, nodes that are on the same rack will have higher bandwidth between them as opposed to nodes that are off-rack

MapReduce

- In this part, the following concepts of MapReduce will be described:
 - Basics

A close look at MapReduce data flow

- Additional functionality
- Scheduling and fault-tolerance in MapReduce
- Comparison with existing techniques and models

Hadoop

- Since its debut on the computing stage, MapReduce has frequently been associated with *Hadoop*
- Hadoop is an open source implementation of MapReduce and is currently enjoying wide popularity
- Hadoop presents MapReduce as an analytics engine and under the hood uses a distributed storage layer referred to as Hadoop Distributed File System (*HDFS*)
- HDFS mimics Google File System (GFS)

Hadoop MapReduce: A Closer Look

Node 1

Node 2

Input Files

- Input files are where the data for a MapReduce task is initially stored
- The input files typically reside in a distributed file system (e.g. HDFS)
- The format of input files is arbitrary
 - Line-based log files
 - Binary files
 - Multi-line input records
 - Or something else entirely

InputFormat

- How the input files are split up and read is defined by the InputFormat
- InputFormat is a class that does the following:
- Selects the files that should be used for input
- Defines the *InputSplits* that break a file
- Provides a factory for *RecordReader* objects that read the file

InputFormat Types

Several InputFormats are provided with Hadoop:

© (

InputFormat	Description	Key	Value
TextInputFormat	Default format; reads lines of text files	The byte offset of the line	The line contents
KeyValueInputFormat	Parses lines into (K, V) pairs	Everything up to the first tab character	The remainder of the line
SequenceFileInputFormat	A Hadoop-specific high-performance binary format	user-defined	user-defined
			جامعة کارنیدی میلود فی قطر Carnegie Mellon Qatar

Input Splits

- An *input split* describes a unit of work that comprises a single map task in a MapReduce program
- By default, the InputFormat breaks a file up into 64MB splits
- By dividing the file into splits, we allow several map tasks to operate on a single file in parallel
- If the file is very large, this can improve performance significantly through parallelism
- Each map task corresponds to a single input split

Files loaded from local HDFS store

Split

InputFormat

file

RecordReader

- The input split defines a slice of work but does not describe how to access it
- The *RecordReader* class actually loads data from its source and converts it into (K, V) pairs suitable for reading by Mappers
- The RecordReader is invoked repeatedly on the input until the entire split is consumed
- Each invocation of the RecordReader leads to another call of the map function defined by the programmer

Mapper and Reducer

- The Mapper performs the user-defined work of the first phase of the MapReduce program
 Files loaded from local HDFS store
- A new instance of Mapper is created for each split
- The *Reducer* performs the user-defined work of the second phase of the MapReduce program
- A new instance of Reducer is created for each partition
- For each key in the partition assigned to a Reducer, the Reducer is called once

file

file

Partitioner

- Each mapper may emit (K, V) pairs to any partition
- Therefore, the map nodes must all agree on where to send different pieces of intermediate data
- The *partitioner* class determines which partition a given (K,V) pair will go to
- The default partitioner computes a hash value for a given key and assigns it to a partition based on this result

Sort

- Each Reducer is responsible for reducing the values associated with (several) intermediate keys
- The set of intermediate keys on a single node is *automatically sorted* by MapReduce before they are presented to the Reducer

OutputFormat

- The *OutputFormat* class defines the way (K,V) pairs produced by Reducers are written to output files
- The instances of OutputFormat provided by Hadoop write to files on the local disk or in HDFS
- Several OutputFormats are provided by Hadoop:

OutputFormat	Description
TextOutputFormat	Default; writes lines in "key \t value" format
SequenceFileOutputFormat	Writes binary files suitable for reading into subsequent MapReduce jobs
NullOutputFormat	Generates no output files

file

MapReduce

- In this part, the following concepts of MapReduce will be described:
 - Basics
 - A close look at MapReduce data flow
 - Additional functionality
 - Scheduling and fault-tolerance in MapReduce
 - Comparison with existing techniques and models

Combiner Functions

- MapReduce applications are limited by the bandwidth available on the cluster
- It pays to minimize the data shuffled between map and reduce tasks
- Hadoop allows the user to specify a combiner function (just like the reduce function) to be run on a map output

MapReduce

- In this part, the following concepts of MapReduce will be described:
 - Basics
 - A close look at MapReduce data flow
 - Additional functionality
 - Scheduling and fault-tolerance in MapReduce
 - Comparison with existing techniques and models

Task Scheduling in MapReduce

- MapReduce adopts a *master-slave architecture* TT Task Slots The master node in MapReduce is referred Request to as Job Tracker (JT) JT Reply Tasks Queue Reply Each slave node in MapReduce is referred Request to as *Task Tracker* (TT) TT Task Slots MapReduce adopts a *pull scheduling* strategy rather than a push one
 - I.e., JT does not push map and reduce tasks to TTs but rather TTs pull them by making pertaining requests

Map and Reduce Task Scheduling

- Every TT sends a *heartbeat message* periodically to JT encompassing a request for a map or a reduce task to run
- I. Map Task Scheduling:
 - JT satisfies requests for map tasks via attempting to schedule mappers in the *vicinity* of their input splits (i.e., it considers locality)

II. <u>Reduce Task Scheduling</u>:

 However, JT simply assigns the next yet-to-run reduce task to a requesting TT regardless of TT's network location and its implied effect on the reducer's shuffle time (i.e., it does not consider locality)

حامحة کارنیدی سلوں فی قطر **Carnegie Mellon Qatar**

Job Scheduling in MapReduce

- In MapReduce, an application is represented as a *job*
- A job encompasses multiple map and reduce tasks
- MapReduce in Hadoop comes with a choice of schedulers:
 - The default is the FIFO scheduler which schedules jobs in order of submission
 - There is also a multi-user scheduler called the *Fair scheduler* which aims to give every user a fair share of the cluster capacity over time

حامجة کارنیدی میلور فی قطر Carnegie Mellon Qatar

Fault Tolerance in Hadoop

- MapReduce can guide jobs toward a successful completion even when jobs are run on a large cluster where probability of failures increases
- The primary way that MapReduce achieves fault tolerance is through restarting tasks
- If a TT fails to communicate with JT for a period of time (by default, 1 minute in Hadoop), JT will assume that TT in question has crashed
 - If the job is still in the map phase, JT asks another TT to re-execute <u>all</u> <u>Mappers that previously ran at the failed TT</u>

If the job is in the reduce phase, JT asks another TT to re-execute <u>all</u> <u>Reducers that were in progress on the failed TT</u>

حامجة كارنيدى سامر في قطر **Carnegie Mellon Qatar**

© Carnegie Mellon University in Qatar

Speculative Execution

- A MapReduce job is dominated by the slowest task
- MapReduce attempts to locate slow tasks (*stragglers*) and run redundant (*speculative*) tasks that will optimistically commit before the corresponding stragglers
- This process is known as speculative execution
- Only one copy of a straggler is allowed to be speculated

 Whichever copy (among the two copies) of a task commits first, it becomes the definitive copy, and the other copy is killed by JT

حامعة کارنیدی سلوں فی قطر **Carnegie Mellon Qatar**

© Carnegie Mellon University in Qatar

Locating Stragglers

- How does Hadoop locate stragglers?
 - Hadoop monitors each task progress using a progress score between 0 and 1
 - If a task's progress score *is less than* (average 0.2), and the task has run for at least 1 minute, it is marked as a straggler

MapReduce

- In this part, the following concepts of MapReduce will be described:
 - Basics 11
 - A close look at MapReduce data flow
 - Additional functionality
 - Scheduling and fault-tolerance in MapReduce
 - Comparison with existing techniques and models

Comparison with Existing Techniques-Condor (1)

- Performing computation on large volumes of data has been done before, usually in a distributed setting by using *Condor* (for instance)
- Condor is a specialized workload management system for compute-intensive jobs
- Users submit their *serial or parallel* jobs to Condor and Condor:
 - Places them into a queue
 - Chooses when and where to run the jobs based upon a policy
 - Carefully monitors their progress, and ultimately informs the user upon completion

حامجة کارنیدی میلور فی قطر Carnegie Mellon Qatar

Comparison with Existing Techniques-Condor (2)

- Condor <u>does not automatically</u> distribute data
- A separate storage area network (SAN) is typically incorporated in addition to the compute cluster
- Furthermore, collaboration between multiple compute nodes must be managed with a message passing system such as MPI
 Compute Node
- Condor is not easy to work with and can lead to the introduction of subtle errors

What Makes MapReduce Unique?

- MapReduce is characterized by:
 - 1. Its simplified programming model which allows the user to quickly write and test distributed systems
 - 2. Its efficient and automatic distribution of data and workload across machines
 - 3. Its flat scalability curve. Specifically, after a Mapreduce program is written and functioning on 10 nodes, very little-if any- work is required for making that same program run on 1000 nodes
 - 4. Its fault tolerance approach

Comparison With Traditional Models

Aspect	Shared Memory	Message Passing	MapReduce
Communication	Implicit (via loads/stores)	Explicit Messages	Limited and Implicit
Synchronization	Explicit	Implicit (via messages)	Immutable (K, V) Pairs
Hardware Support	Typically Required	None	None
Development Effort	Lower	Higher	Lowest
Tuning Effort	Higher	Lower	Lowest

جامعۃ کارنیجی میلوں فی قطر Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar

Next Class

