Today…

- Last session
 - Programming Models- \textit{Part II}

- Today’s session
 - Programming Models – \textit{Part III}

- Announcement:
 - Project update is due today
Objectives

Discussion on Programming Models

- Why parallelism?
- Parallel computer architectures
- Traditional models of parallel processing
- Examples of parallel processing
- Message Passing Interface (MPI)
- MapReduce
- Pregel, Dryad, and GraphLab

Last 2 Sessions

© Carnegie Mellon University in Qatar
MapReduce

In this part, the following concepts of MapReduce will be described:

- Basics
- A close look at MapReduce data flow
- Additional functionality
- Scheduling and fault-tolerance in MapReduce
- Comparison with existing techniques and models
MapReduce

- In this part, the following concepts of MapReduce will be described:
 - Basics
 - A close look at MapReduce data flow
 - Additional functionality
 - Scheduling and fault-tolerance in MapReduce
 - Comparison with existing techniques and models
Problem Scope

- **MapReduce** is a programming model for data processing.

- The power of MapReduce lies in its ability to scale to 100s or 1000s of computers, each with several processor cores.

- How large an amount of work?

 - Web-scale data on the order of 100s of GBs to TBs or PBs.

 - It is likely that the input data set will not fit on a single computer’s hard drive.

 - Hence, a distributed file system (e.g., Google File System- GFS) is typically required.
Commodity Clusters

- MapReduce is designed to efficiently process large volumes of data by connecting many commodity computers together to work in parallel.

- A *theoretical* 1000-CPU machine would cost a very large amount of money, far more than 1000 single-CPU or 250 quad-core machines.

- MapReduce ties smaller and more reasonably priced machines together into a single cost-effective *commodity cluster*.
Isolated Tasks

- MapReduce divides the workload into multiple *independent tasks* and schedule them across cluster nodes.

- A work performed by each task is done *in isolation* from one another.

- The amount of communication which can be performed by tasks is mainly limited for scalability and fault tolerance reasons.
 - The communication overhead required to keep the data on the nodes synchronized at all times would prevent the model from performing reliably and efficiently at large scale.
Data Distribution

- In a MapReduce cluster, data is distributed to all the nodes of the cluster as it is being loaded in.

- An underlying distributed file systems (e.g., GFS) splits large data files into chunks which are managed by different nodes in the cluster.

- Even though the file chunks are distributed across several machines, they form a single namespace.
MapReduce: A Bird’s-Eye View

- In MapReduce, chunks are processed in isolation by tasks called Mappers.

- The outputs from the mappers are denoted as intermediate outputs (IOs) and are brought into a second set of tasks called Reducers.

- The process of bringing together IOs into a set of Reducers is known as shuffling process.

- The Reducers produce the final outputs (FOs).

- Overall, MapReduce breaks the data flow into two phases, map phase and reduce phase.
The programmer in MapReduce has to specify two functions, the *map function* and the *reduce function* that implement the Mapper and the Reducer in a MapReduce program.

In MapReduce data elements are always structured as key-value (i.e., (K, V)) pairs.

The map and reduce functions receive and *emit* (K, V) pairs.
Partitions

- In MapReduce, intermediate output values are not usually reduced together

- *All values with the same key are presented to a single Reducer together*

- More specifically, a different subset of intermediate key space is assigned to each Reducer

- These subsets are known as *partitions*

Different colors represent different keys (potentially) from different Mappers

Partitions are the input to Reducers
Network Topology In MapReduce

- MapReduce assumes a tree style network topology
- Nodes are spread over different racks embraced in one or many data centers
- A salient point is that the bandwidth between two nodes is dependent on their relative locations in the network topology
- For example, nodes that are on the same rack will have higher bandwidth between them as opposed to nodes that are off-rack
MapReduce

- In this part, the following concepts of MapReduce will be described:
 - Basics
 - A close look at MapReduce data flow
 - Additional functionality
 - Scheduling and fault-tolerance in MapReduce
 - Comparison with existing techniques and models
Since its debut on the computing stage, MapReduce has frequently been associated with Hadoop.

Hadoop is an open source implementation of MapReduce and is currently enjoying wide popularity.

Hadoop presents MapReduce as an analytics engine and under the hood uses a distributed storage layer referred to as Hadoop Distributed File System (HDFS).

HDFS mimics Google File System (GFS).
Hadoop MapReduce: A Closer Look

Node 1

Files loaded from local HDFS store

InputFormat

Split

Split

Split

RecordReaders

RR

RR

RR

Input (K, V) pairs

Intermediate (K, V) pairs

Partitioner

Sort

Reduce

Final (K, V) pairs

OutputFormat

Writeback to local HDFS store

Node 2

Files loaded from local HDFS store

InputFormat

Split

Split

Split

RecordReaders

RR

RR

RR

Input (K, V) pairs

Intermediate (K, V) pairs

Partitioner

Sort

Intermediate (K, V) pairs exchanged by all nodes

Reduce

Final (K, V) pairs

OutputFormat

Writeback to local HDFS store

Shuffling Process

© Carnegie Mellon University in Qatar
Input Files

- *Input files* are where the data for a MapReduce task is initially stored.

- The input files typically reside in a distributed file system (e.g., HDFS).

- The format of input files is arbitrary:
 - Line-based log files
 - Binary files
 - Multi-line input records
 - Or something else entirely.
InputFormat

- How the input files are split up and read is defined by the *InputFormat*

- InputFormat is a class that does the following:
 - Selects the files that should be used for input
 - Defines the *InputSplits* that break a file
 - Provides a factory for *RecordReader* objects that read the file

© Carnegie Mellon University in Qatar
InputFormat Types

Several InputFormats are provided with Hadoop:

<table>
<thead>
<tr>
<th>InputFormat</th>
<th>Description</th>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TextInputFormat</td>
<td>Default format; reads lines of text files</td>
<td>The byte offset of the line</td>
<td>The line contents</td>
</tr>
<tr>
<td>KeyValueInputFormat</td>
<td>Parses lines into (K, V) pairs</td>
<td>Everything up to the first tab character</td>
<td>The remainder of the line</td>
</tr>
<tr>
<td>SequenceFileInputFormat</td>
<td>A Hadoop-specific high-performance binary format</td>
<td>user-defined</td>
<td>user-defined</td>
</tr>
</tbody>
</table>
Input Splits

- An *input split* describes a unit of work that comprises a single map task in a MapReduce program.

- By default, the InputFormat breaks a file up into 64MB splits.

- By dividing the file into splits, we allow several map tasks to operate on a single file in parallel.

- If the file is very large, this can improve performance significantly through parallelism.

- Each map task corresponds to a *single* input split.
RecordReader

- The input split defines a slice of work but does not describe how to access it.
- The *RecordReader* class actually loads data from its source and converts it into (K, V) pairs suitable for reading by Mappers.
- The RecordReader is invoked repeatedly on the input until the entire split is consumed.
- Each invocation of the RecordReader leads to another call of the map function defined by the programmer.
The **Mapper** performs the user-defined work of the first phase of the MapReduce program

A new instance of Mapper is created for each split

The **Reducer** performs the user-defined work of the second phase of the MapReduce program

A new instance of Reducer is created for each partition

For each key in the partition assigned to a Reducer, the Reducer is called once
Partitioner

- Each mapper may emit (K, V) pairs to any partition
- Therefore, the map nodes must all agree on where to send different pieces of intermediate data
- The **partitioner** class determines which partition a given (K,V) pair will go to
- The default partitioner computes a *hash value* for a given key and assigns it to a partition based on this result
Each Reducer is responsible for reducing the values associated with (several) intermediate keys.

The set of intermediate keys on a single node is *automatically sorted* by MapReduce before they are presented to the Reducer.
OutputFormat

- The **OutputFormat** class defines the way (K,V) pairs produced by Reducers are written to output files.
- The instances of OutputFormat provided by Hadoop write to files on the local disk or in HDFS.
- Several OutputFormats are provided by Hadoop:

<table>
<thead>
<tr>
<th>OutputFormat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TextOutputFormat</td>
<td>Default; writes lines in "key \t value" format</td>
</tr>
<tr>
<td>SequenceFileOutputFormat</td>
<td>Writes binary files suitable for reading into subsequent MapReduce jobs</td>
</tr>
<tr>
<td>NullOutputFormat</td>
<td>Generates no output files</td>
</tr>
</tbody>
</table>
MapReduce

- In this part, the following concepts of MapReduce will be described:
 - Basics
 - A close look at MapReduce data flow
 - Additional functionality
 - Scheduling and fault-tolerance in MapReduce
 - Comparison with existing techniques and models
Combiner Functions

- MapReduce applications are limited by the bandwidth available on the cluster.
- It pays to minimize the data shuffled between map and reduce tasks.
- Hadoop allows the user to specify a combiner function (just like the reduce function) to be run on a map output.

Legend:
- R = Rack
- N = Node
- MT = Map Task
- RT = Reduce Task
- Y = Year
- T = Temperature
MapReduce

In this part, the following concepts of MapReduce will be described:

- Basics
- A close look at MapReduce data flow
- Additional functionality
- Scheduling and fault-tolerance in MapReduce
- Comparison with existing techniques and models
Task Scheduling in MapReduce

- MapReduce adopts a *master-slave architecture*

- The master node in MapReduce is referred to as *Job Tracker* (JT)

- Each slave node in MapReduce is referred to as *Task Tracker* (TT)

- MapReduce adopts a *pull scheduling* strategy rather than a *push one*

 - I.e., JT does not push map and reduce tasks to TTs but rather TTs pull them by making pertaining requests
Map and Reduce Task Scheduling

- Every TT sends a *heartbeat message* periodically to JT encompassing a request for a map or a reduce task to run.

I. Map Task Scheduling:

- JT satisfies requests for map tasks via attempting to schedule mappers in the *vicinity* of their input splits (i.e., it considers locality).

II. Reduce Task Scheduling:

- However, JT simply assigns the next yet-to-run reduce task to a requesting TT regardless of TT’s network location and its implied effect on the reducer’s shuffle time (i.e., it does not consider locality).
Job Scheduling in MapReduce

- In MapReduce, an application is represented as a job.

- A job encompasses multiple map and reduce tasks.

- MapReduce in Hadoop comes with a choice of schedulers:
 - The default is the *FIFO scheduler* which schedules jobs in order of submission.
 - There is also a multi-user scheduler called the *Fair scheduler* which aims to give every user a fair share of the cluster capacity over time.
Fault Tolerance in Hadoop

- MapReduce can guide jobs toward a successful completion even when jobs are run on a large cluster where probability of failures increases.

- The primary way that MapReduce achieves fault tolerance is through *restarting tasks*.

- If a TT fails to communicate with JT for a period of time (by default, 1 minute in Hadoop), JT will assume that TT in question has crashed.
 - If the job is still in the map phase, JT asks another TT to re-execute *all Mappers that previously ran at the failed TT*.
 - If the job is in the reduce phase, JT asks another TT to re-execute *all Reducers that were in progress on the failed TT*.
Speculative Execution

- A MapReduce job is dominated by the slowest task
- MapReduce attempts to locate slow tasks (stragglers) and run redundant (speculative) tasks that will optimistically commit before the corresponding stragglers
- This process is known as speculative execution
- Only one copy of a straggler is allowed to be speculated
- Whichever copy (among the two copies) of a task commits first, it becomes the definitive copy, and the other copy is killed by JT
Locating Stragglers

- How does Hadoop locate stragglers?
 - Hadoop monitors each task progress using a *progress score* between 0 and 1.
 - If a task’s progress score is less than \(\text{average} - 0.2 \), and the task has run for at least 1 minute, it is marked as a straggler.

![Diagram showing task progress scores and stragglers](image)

- \(\text{PS} = \frac{2}{3} \) Not a straggler
- \(\text{PS} = \frac{1}{12} \) A straggler
MapReduce

- In this part, the following concepts of MapReduce will be described:
 - Basics
 - A close look at MapReduce data flow
 - Additional functionality
 - Scheduling and fault-tolerance in MapReduce
 - Comparison with existing techniques and models
Comparison with Existing Techniques - Condor (1)

- Performing computation on large volumes of data has been done before, usually in a distributed setting by using Condor (for instance).

- Condor is a specialized workload management system for compute-intensive jobs.

- Users submit their *serial or parallel* jobs to Condor and Condor:
 - Places them into a queue
 - Chooses when and where to run the jobs based upon a policy
 - Carefully monitors their progress, and ultimately informs the user upon completion.
Comparison with Existing Techniques—Condor (2)

- Condor *does not automatically* distribute data.

- A separate storage area network (SAN) is typically incorporated in addition to the compute cluster.

- Furthermore, collaboration between multiple compute nodes must be managed with a message passing system such as MPI.

- Condor is not easy to work with and can lead to the introduction of subtle errors.
What Makes MapReduce Unique?

- MapReduce is characterized by:

 1. Its simplified programming model which allows the user to quickly write and test distributed systems

 2. Its efficient and automatic distribution of data and workload across machines

 3. Its flat scalability curve. Specifically, after a Mapreduce program is written and functioning on 10 nodes, very little-if any- work is required for making that same program run on 1000 nodes

 4. Its fault tolerance approach
Comparison With Traditional Models

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Shared Memory</th>
<th>Message Passing</th>
<th>MapReduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Implicit (via loads/stores)</td>
<td>Explicit Messages</td>
<td>Limited and Implicit</td>
</tr>
<tr>
<td>Synchronization</td>
<td>Explicit</td>
<td>Implicit (via messages)</td>
<td>Immutable (K, V) Pairs</td>
</tr>
<tr>
<td>Hardware Support</td>
<td>Typically Required</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Development Effort</td>
<td>Lower</td>
<td>Higher</td>
<td>Lowest</td>
</tr>
<tr>
<td>Tuning Effort</td>
<td>Higher</td>
<td>Lower</td>
<td>Lowest</td>
</tr>
</tbody>
</table>
Next Class

Discussion on Programming Models

Why parallelism?
Parallel computer architectures
Traditional models of parallel programming
Examples of parallel processing
Message Passing Interface (MPI)
MapReduce
Pregel, Dryad, and GraphLab

Programming Models- Part IV