
Cloud Computing
CS 15-319

Pregel
Lecture 10, Feb 15, 2012

Majd F. Sakr, Suhail Rehman and
Mohammad Hammoud

Today…

 Last session
 Apache Mahout, Guest Lecture

 Today’s session
 Pregel

 Announcement:
 Project Phases I-A and I-B are due today

2© Carnegie Mellon University in Qatar

Objectives

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface (MPI)

Pregel, Dryad
and GraphLab

Last 3 Sessions

MapReduce

Pregel, Dryad
and GraphLab

© Carnegie Mellon University in Qatar 3

4

Pregel

© Carnegie Mellon University in Qatar

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

5© Carnegie Mellon University in Qatar

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

6© Carnegie Mellon University in Qatar

Motivation for Pregel
 How to implement algorithms to process large graphs?

 Create a custom distributed infrastructure for each new algorithm

 Rely on existing distributed computing platforms such as MapReduce

 Use a single-computer graph algorithm library like BGL, LEDA,
NetworkX etc.

 Use a parallel graph processing system like Parallel BGL or CGMGraph

7© Carnegie Mellon University in Qatar

Motivation for Pregel
 How to implement algorithms to process large graphs?

 Create a custom distributed infrastructure for each new algorithm

 Rely on existing distributed computing platforms such as MapReduce

 Use a single-computer graph algorithm library like BGL, LEDA,
NetworkX etc.

 Use a parallel graph processing system like Parallel BGL or CGMGraph

8

Difficult!

Inefficient and Cumbersome!

Too large to fit on single machine!

Not suited for Large Scale Distributed Systems!

© Carnegie Mellon University in Qatar

Pregel
 Pregel is a framework developed by Google. It provides:

 High scalability
 Fault-tolerance
• Flexibility in expressing arbitrary graph algorithms

 Pregel is inspired by Valiant’s Bulk Synchronous Parallel
(BSP) model

9© Carnegie Mellon University in Qatar

Bulk Synchronous Parallel
Model

10

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

B
ar

rie
r

B
ar

rie
r

Data

Data

Data

Data

Data

Data

Data

B
ar

rie
r

© Carnegie Mellon University in Qatar

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

11© Carnegie Mellon University in Qatar

Entities and Supersteps
 The computation is described in terms of vertices, edges and a

sequence of iterations called supersteps

 You give Pregel a directed graph consisting of
vertices and edges
 Each vertex is associated with a modifiable

user-defined value
 Each edge is associated with a source vertex, value

and a destination vertex

 During a superstep:
 A user-defined function F is executed at each vertex V
 F can read messages sent to V in superstep S – 1 and send messages to other

vertices that will be received at superstep S + 1
 F can modify the state of V and its outgoing edges
 F can change the topology of the graph

12© Carnegie Mellon University in Qatar

Algorithm Termination
 Algorithm termination is based on every vertex voting to halt

 In superstep 0, every vertex is active
 All active vertices participate in the computation of any given superstep
 A vertex deactivates itself by voting

to halt and enters an inactive state
 A vertex can return to active state

if it receives an external message

 Program terminates when all vertices
are simultaneously inactive and there are no messages in transit

13

Active Inactive

Vote to Halt

Message Received

Vertex State Machine

© Carnegie Mellon University in Qatar

Finding the Max Value in a Graph

3 6 2 1

3 6 2 16 2 66

6 6 2 66 6

6 6 6 66

Blue Arrows
are messages

Blue vertices
have voted to
halt

6

© Carnegie Mellon University in Qatar 14

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

15© Carnegie Mellon University in Qatar

The Pregel API in C++
 A Pregel program is written by subclassing the vertex class:

16

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:

virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;
const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Override the
compute function to

define the
computation at
each superstep

To pass messages
to other vertices

To define the types for vertices,
edges and messages

To get the value of the
current vertex

To modify the value of
the vertex

© Carnegie Mellon University in Qatar

Pregel Code for Finding the Max
Value

Class MaxFindVertex
: public Vertex<double, void, double> {

public:
virtual void Compute(MessageIterator* msgs) {

int currMax = GetValue();
SendMessageToAllNeighbors(currMax);
for (; !msgs->Done(); msgs->Next()) {

if (msgs->Value() > currMax)
currMax = msgs->Value();

}
if (currMax > GetValue())

*MutableValue() = currMax;
else VoteToHalt();

}
};

© Carnegie Mellon University in Qatar 17

Message Passing, Combiners, and
Aggregators

 Messages can be passed from any vertex to any other vertex in the
Graph

 Any number of messages may be passed
 Message order is not guaranteed
 Messages will not be duplicated

 Combiners can be used to reduce the number of messages passed
between supersteps

 Aggregators are available for reduction operations such as
sum, min, max etc.

18© Carnegie Mellon University in Qatar

Topology Mutations, Input and Output

 The graph structure can be modified during any superstep
 Vertices and edges can be added or deleted
 Conflicts are handled using partial ordering of operations
 User-defined handlers are also available to manage conflicts

 Flexible input and output formats
 Text File
 Relational Database
 Bigtable Entries

 Interpretation of input is a “pre-processing” step separate from graph
computation
 Custom formats can be created by sub-classing the Reader and Writer

classes

19© Carnegie Mellon University in Qatar

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

20© Carnegie Mellon University in Qatar

Graph Partitioning
 The input graph is divided into partitions consisting of vertices and

outgoing edges
 Default partitioning function is hash(ID) mod N, where N is the # of partitions
 It can be customized

1 4

107

2

85

6

9

3

11

12

© Carnegie Mellon University in Qatar 21

Execution of a Pregel Program
 Steps of Program Execution:

1. Copies of the program are distributed across all workers
1.1 One copy is designated as a master

2. Master partitions the graph and assigns workers their respective
partition(s) along with portions of the input

3. Master coordinates the execution of supersteps and delivers messages
among vertices

4. Master calculates the number of inactive vertices after each superstep
and signals workers to terminate if all vertices are inactive and no
messages are in transit

5. Each worker may be instructed to save its portion of the graph

22© Carnegie Mellon University in Qatar

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

23© Carnegie Mellon University in Qatar

Fault Tolerance in Pregel
 Fault tolerance is achieved through checkpointing

 At the start of every superstep the master may instruct the workers to
save the state of their partitions in a stable storage

 Master uses ping messages to detect worker failures

 If a worker fails, the master reassigns corresponding vertices and
input to another available worker and restarts the superstep

 The available worker reloads the partition state of the failed worker from
the most recent available checkpoint

24© Carnegie Mellon University in Qatar

Next Class

Dryad and GraphLab

© Carnegie Mellon University in Qatar 25

