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Today…

 Last session
 Pregel

 Today’s session
 Dryad and GraphLab

 Announcement:
 Project Phases I-A and I-B are due today
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Why 
parallelism?
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computer 
architectures
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models of 
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Dryad
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Dryad
 In this part, the following concepts of Dryad will

be described:

 Dryad Model
 Dryad Organization
 Dryad Description Language and An Example Program
 Fault Tolerance in Dryad
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Dryad
 Dryad is a general purpose, high-performance, distributed

computation engine

 Dryad is designed for:
 High-throughput
 Data-parallel computation
 Use in a private datacenter

 Computation is expressed as a directed-acyclic-graph (DAG)
 Vertices represent programs
 Edges represent data channels between vertices
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Unix Pipes vs. Dryad DAG
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Dryad Job Structure
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grep1000 |  sed500 | sort1000 | awk500 |  perl50
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Dryad System Organization
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 There are 3 roles for machines in Dryad
 Job Manager (JM)
 Name Server (NS)
 Daemon (D)
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Program Execution (1)
 The Job Manager (JM):

 Creates the job communication graph (job schedule)
 Contacts the NS to determine the 

number of Ds and the topology
 Assigns Vs to each D (using a 

simple task scheduler-
not described) for execution 

 Coordinates data flow through the 
data plane

 Data is distributed using a distributed storage system that shares with the 
Google File System some properties (e.g., data are split into chunks and 
replicated across machines)

 Dryad also supports the use of NTFS for accessing files locally
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JM 
code

vertex 
code

Program Execution (2)
1. Build

2. Send 
.exe

3. Start JM

5. Generate graph

7. Serialize
vertices

8. Monitor
Vertex execution

4. Query
cluster resources

Cluster 
services6. Initialize vertices
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Data Channels in Dryad
 Data items can be shuffled between vertices through 

data channels

 Data channels can be: 
 Shared Memory FIFOs (intra-machine)

 TCP Streams (inter-machine)

 SMB/NTFS Local Files (temporary)

 Distributed File System (persistent)

 The performance and fault tolerance of these 
mechanisms vary

 Data channels are abstracted for maximum flexibility
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Dryad
 In this part, the following concepts of Dryad will

be described:

 Dryad Model
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 Dryad Description Language and An Example Program
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Dryad Graph Description 
Language
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A A
n

AS = A^n

(Cloning)

A A
n

AS >= BS

(Pointwise 
Composition)

B B
n

A A
n

AS >> BS

(Bipartite 
Composition)

B B
n

B

C D

(B>=C) || (B>=D) 

(Merge)

 Here are some operators in the Dryad graph description language:
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Example Program in Dryad (1)
 Skyserver SQL Query (Q18):

 Find all the objects in the database that have 
neighboring objects within 30 arc seconds 
such that at least one of the neighbors has a 
color similar to the primary object’s color

 There are two tables involved
 photoObjAll and it has 354,254,163 

records
 Neighbors and it has 2,803,165,372 

records 

 For the equivalent Dryad computation, they 
extracted the columns of interest into two 
binary files, “ugriz.bin” and “neighbors.bin”
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Example Program in 
Dryad (2)

 Took SQL plan
 Manually coded in Dryad
 Manually partitioned data

u: objid, color
n: objid, neighborobjid
[partition by objid]

select
u.color,n.neighborobjid

from u join n
where

u.objid = n.objid

(u.color,n.neighborobjid)
[re-partition by n.neighborobjid]
[order by n.neighborobjid]

[distinct]
[merge outputs]

select
u.objid

from u join <temp>
where

u.objid = <temp>.neighborobjid and
|u.color - <temp>.color| < d
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Example Program in Dryad (3)
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GraphBuilder XSet = moduleX^N;
GraphBuilder DSet = moduleD^N;
GraphBuilder MSet = moduleM^(N*4);
GraphBuilder SSet = moduleS^(N*4);
GraphBuilder YSet = moduleY^N;
GraphBuilder HSet = moduleH^1;

GraphBuilder XInputs = (ugriz1 >= XSet) || (neighbor >= XSet);

GraphBuilder YInputs = ugriz2 >= YSet;
GraphBuilder XToY = XSet >= DSet >> MSet >= SSet;

for (i = 0; i < N*4; ++i)
{
XToY = XToY || (SSet.GetVertex(i) >= YSet.GetVertex(i/4));
}

GraphBuilder YToH = YSet >= HSet;
GraphBuilder HOutputs = HSet >= output;

GraphBuilder final = XInputs || YInputs || XToY || YToH || 
HOutputs;

 Here is the corresponding Dryad code:
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Dryad
 In this part, the following concepts of Dryad will

be described:

 Dryad Model
 Dryad Organization
 Dryad Description Language and An Example Program
 Fault Tolerance in Dryad
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Fault Tolerance in Dryad (1)
 Dryad is designed to handle two types of failures:

 Vertex failures
 Channel failures

 Vertex failures are handled by the JM and the failed vertex is re-executed 
on another machine

 Channel failures cause the preceding vertex to be re-executed
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X[0] X[1] X[3] X[2] X’[2]

Completed vertices Slow 
vertex

Duplicate
vertex

Fault Tolerance in Dryad (2)

Duplication Policy = f(running times, data volumes)
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GraphLab
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GraphLab
 In this part, the following concepts of GraphLab will

be described:

 Motivation for GraphLab
 GraphLab Data Model and Update Mechanisms
 Scheduling in GraphLab
 Consistency Models in GraphLab
 PageRank in GraphLab
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Motivation for GraphLab
 Shortcomings of MapReduce
 Interdependent data computation difficult to perform
 Overheads of running jobs iteratively – disk access and 

startup overhead
 Communication pattern is not user definable/flexible

 Shortcomings of Pregel
 BSP model requires synchronous computation
 One slow machine can slow down the entire computation considerably

 Shortcomings of Dryad
 Very flexible but steep learning curve for the programming model
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GraphLab
 GraphLab is a framework for parallel machine learning
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Data Graph

Shared Data Table

Scheduling

Update Functions and Scopes
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GraphLab
 In this part, the following concepts of GraphLab will

be described:
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Data Graph
 A graph in GraphLab is associated with data at every vertex and edge
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Data Graph

 Arbitrary blocks of data can be assigned to vertices and edges
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Update Functions
 The data graph is modified using update functions

 The update function can modify a vertex v and its neighborhood, defined as the
scope of v (Sv)
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v

Sv
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Shared Data Table

 Certain algorithms require global information that is shared among 
all vertices (Algorithm Parameters, Statistics, etc.)
 GraphLab exposes a Shared Data Table (SDT)

 SDT is an associative map between keys and arbitrary blocks 
of data
 T[Key] → Value

 The shared data table is updated using the sync mechanism
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Shared Data Table

© Carnegie Mellon University in Qatar



Sync Mechanism
 Similar to Reduce in MapReduce

 User can define fold, merge and apply functions that are triggered during the 
global sync mechanism

 Fold function allows the user to sequentially aggregate information across 
all vertices

 Merge optionally allows user to perform a parallel tree reduction on the 
aggregated data collected during the fold operation

 Apply function allows the user to finalize the resulting value from the 
fold/merge operations (such as normalization etc.) 
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sync
Shared Data Table
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GraphLab
 In this part, the following concepts of GraphLab will

be described:

 Motivation for GraphLab
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Scheduling in GraphLab (1)

CPU 1

CPU 2

 The scheduler determines the order that vertices are updated
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The process repeats until the scheduler is empty
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Scheduling in GraphLab (2)

 An update schedule defines the order in which update functions are 
applied to vertices
 A parallel data-structure called the scheduler represents an abstract list of tasks 

to be executed in Graphlab

 Base (Vertex) schedulers in GraphLab
 Synchronous scheduler
 Round-robin scheduler

 Job Schedulers in GraphLab
 FIFO scheduler
 Priority scheduler

 Custom schedulers can be defined by the set scheduler
 Termination Assessment 

 If the scheduler has no remaining tasks
 Or, a termination function can be defined to check for convergence in the data
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Need for Consistency Models
 How much can computation overlap?
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Consistency Models in GraphLab

 GraphLab guarantees sequential consistency
 Guaranteed to give the same result as a sequential execution of the 

computational steps 

 User-defined consistency models
 Full Consistency
 Vertex Consistency
 Edge Consistency
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GraphLab
 In this part, the following concepts of GraphLab will

be described:
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PageRank (1)
 PageRank is a link analysis algorithm

 The rank value indicates an importance of a particular web page

 A hyperlink to a page counts 
as a vote of support

 A page that is linked to by many pages 
with high PageRank receives a 
high rank itself

 A PageRank of 0.5 means there is a 50% chance that a person 
clicking on a random link will be directed to the document with the 
0.5 PageRank
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PageRank (2)
 Iterate:

 Where:
 α is the random reset probability
 L[j] is the number of links on page j

1 32

4 65
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pagerank(i, scope){
// Get Neighborhood data
(R[i], Wij, R[j]) scope;

// Update the vertex data

// Reschedule Neighbors if needed
if R[i] changes then 
reschedule_neighbors_of(i); 

}

;][)1(][
][


∈

×−+←
iNj

ji jRWiR αα

PageRank Example in GraphLab
 PageRank algorithm is defined as a per-vertex operation working on the scope

of the vertex

Dynamic 
computation
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How MapReduce, Pregel, 
Dryad and GraphLab

Compare Against Each 
Other?
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Comparison of the Programming 
Models

MapReduce Pregel Dryad GraphLab

Programming
Model

Fixed Functions –
Map and Reduce

Supersteps over a 
data graph with 
messages passed

DAG with program 
vertices and data 
edges

Data graph with 
shared data table 
and update functions
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MapReduce Pregel Dryad GraphLab
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Parallelism Concurrent execution 
of tasks within map 
and reduce phases

Concurrent execution
of user functions over 
vertices within a 
superstep

Concurrent execution 
of vertices during a 
stage

Concurrent execution 
of non-overlapping 
scopes, defined by 
consistency model
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can be in memory or 
on disk
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Developed by Google Google Microsoft Carnegie Mellon 
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Next Class

Distributed File Systems
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