
Cloud Computing
CS 15-319

Dryad and GraphLab
Lecture 11, Feb 22, 2012

Majd F. Sakr, Suhail Rehman and
Mohammad Hammoud

Today…

 Last session
 Pregel

 Today’s session
 Dryad and GraphLab

 Announcement:
 Project Phases I-A and I-B are due today

2© Carnegie Mellon University in Qatar

Objectives

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface (MPI)

Pregel, Dryad
and GraphLab

Last 3 Sessions

MapReduce

Pregel, Dryad
and GraphLab

© Carnegie Mellon University in Qatar 3

4

Dryad

© Carnegie Mellon University in Qatar

Dryad
 In this part, the following concepts of Dryad will

be described:

 Dryad Model
 Dryad Organization
 Dryad Description Language and An Example Program
 Fault Tolerance in Dryad

5© Carnegie Mellon University in Qatar

Dryad
 In this part, the following concepts of Dryad will

be described:

 Dryad Model
 Dryad Organization
 Dryad Description Language and An Example Program
 Fault Tolerance in Dryad

6© Carnegie Mellon University in Qatar

Dryad
 Dryad is a general purpose, high-performance, distributed

computation engine

 Dryad is designed for:
 High-throughput
 Data-parallel computation
 Use in a private datacenter

 Computation is expressed as a directed-acyclic-graph (DAG)
 Vertices represent programs
 Edges represent data channels between vertices

7© Carnegie Mellon University in Qatar

Unix Pipes vs. Dryad DAG

8© Carnegie Mellon University in Qatar

Dryad Job Structure

9

grep

sed

sort
awk

perl
grep

grep
sed

sort

sort
awk

Input
files

Vertices
(processes)

Output
files

Channels
Stage

grep1000 | sed500 | sort1000 | awk500 | perl50

© Carnegie Mellon University in Qatar

Dryad
 In this part, the following concepts of Dryad will

be described:

 Dryad Model
 Dryad Organization
 Dryad Description Language and An Example Program
 Fault Tolerance in Dryad

10© Carnegie Mellon University in Qatar

Dryad System Organization

11

 There are 3 roles for machines in Dryad
 Job Manager (JM)
 Name Server (NS)
 Daemon (D)

© Carnegie Mellon University in Qatar

Program Execution (1)
 The Job Manager (JM):

 Creates the job communication graph (job schedule)
 Contacts the NS to determine the

number of Ds and the topology
 Assigns Vs to each D (using a

simple task scheduler-
not described) for execution

 Coordinates data flow through the
data plane

 Data is distributed using a distributed storage system that shares with the
Google File System some properties (e.g., data are split into chunks and
replicated across machines)

 Dryad also supports the use of NTFS for accessing files locally

12© Carnegie Mellon University in Qatar

JM
code

vertex
code

Program Execution (2)
1. Build

2. Send
.exe

3. Start JM

5. Generate graph

7. Serialize
vertices

8. Monitor
Vertex execution

4. Query
cluster resources

Cluster
services6. Initialize vertices

© Carnegie Mellon University in Qatar 13

Data Channels in Dryad
 Data items can be shuffled between vertices through

data channels

 Data channels can be:
 Shared Memory FIFOs (intra-machine)

 TCP Streams (inter-machine)

 SMB/NTFS Local Files (temporary)

 Distributed File System (persistent)

 The performance and fault tolerance of these
mechanisms vary

 Data channels are abstracted for maximum flexibility

14

X

M

Items

© Carnegie Mellon University in Qatar

Dryad
 In this part, the following concepts of Dryad will

be described:

 Dryad Model
 Dryad Organization
 Dryad Description Language and An Example Program
 Fault Tolerance in Dryad

15© Carnegie Mellon University in Qatar

Dryad Graph Description
Language

16

A A
n

AS = A^n

(Cloning)

A A
n

AS >= BS

(Pointwise
Composition)

B B
n

A A
n

AS >> BS

(Bipartite
Composition)

B B
n

B

C D

(B>=C) || (B>=D)

(Merge)

 Here are some operators in the Dryad graph description language:

© Carnegie Mellon University in Qatar

Example Program in Dryad (1)
 Skyserver SQL Query (Q18):

 Find all the objects in the database that have
neighboring objects within 30 arc seconds
such that at least one of the neighbors has a
color similar to the primary object’s color

 There are two tables involved
 photoObjAll and it has 354,254,163

records
 Neighbors and it has 2,803,165,372

records

 For the equivalent Dryad computation, they
extracted the columns of interest into two
binary files, “ugriz.bin” and “neighbors.bin”

D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

L L

© Carnegie Mellon University in Qatar 17

D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

L L

Example Program in
Dryad (2)

 Took SQL plan
 Manually coded in Dryad
 Manually partitioned data

u: objid, color
n: objid, neighborobjid
[partition by objid]

select
u.color,n.neighborobjid

from u join n
where

u.objid = n.objid

(u.color,n.neighborobjid)
[re-partition by n.neighborobjid]
[order by n.neighborobjid]

[distinct]
[merge outputs]

select
u.objid

from u join <temp>
where

u.objid = <temp>.neighborobjid and
|u.color - <temp>.color| < d

© Carnegie Mellon University in Qatar 18

Example Program in Dryad (3)

19

D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

L L

GraphBuilder XSet = moduleX^N;
GraphBuilder DSet = moduleD^N;
GraphBuilder MSet = moduleM^(N*4);
GraphBuilder SSet = moduleS^(N*4);
GraphBuilder YSet = moduleY^N;
GraphBuilder HSet = moduleH^1;

GraphBuilder XInputs = (ugriz1 >= XSet) || (neighbor >= XSet);

GraphBuilder YInputs = ugriz2 >= YSet;
GraphBuilder XToY = XSet >= DSet >> MSet >= SSet;

for (i = 0; i < N*4; ++i)
{
XToY = XToY || (SSet.GetVertex(i) >= YSet.GetVertex(i/4));
}

GraphBuilder YToH = YSet >= HSet;
GraphBuilder HOutputs = HSet >= output;

GraphBuilder final = XInputs || YInputs || XToY || YToH ||
HOutputs;

 Here is the corresponding Dryad code:

© Carnegie Mellon University in Qatar

Dryad
 In this part, the following concepts of Dryad will

be described:

 Dryad Model
 Dryad Organization
 Dryad Description Language and An Example Program
 Fault Tolerance in Dryad

20© Carnegie Mellon University in Qatar

Fault Tolerance in Dryad (1)
 Dryad is designed to handle two types of failures:

 Vertex failures
 Channel failures

 Vertex failures are handled by the JM and the failed vertex is re-executed
on another machine

 Channel failures cause the preceding vertex to be re-executed

21© Carnegie Mellon University in Qatar

X[0] X[1] X[3] X[2] X’[2]

Completed vertices Slow
vertex

Duplicate
vertex

Fault Tolerance in Dryad (2)

Duplication Policy = f(running times, data volumes)

© Carnegie Mellon University in Qatar 22

23

GraphLab

© Carnegie Mellon University in Qatar

GraphLab
 In this part, the following concepts of GraphLab will

be described:

 Motivation for GraphLab
 GraphLab Data Model and Update Mechanisms
 Scheduling in GraphLab
 Consistency Models in GraphLab
 PageRank in GraphLab

24© Carnegie Mellon University in Qatar

GraphLab
 In this part, the following concepts of GraphLab will

be described:

 Motivation for GraphLab
 GraphLab Data Model and Update Mechanisms
 Scheduling in GraphLab
 Consistency Models in GraphLab
 PageRank in GraphLab

25© Carnegie Mellon University in Qatar

Motivation for GraphLab
 Shortcomings of MapReduce
 Interdependent data computation difficult to perform
 Overheads of running jobs iteratively – disk access and

startup overhead
 Communication pattern is not user definable/flexible

 Shortcomings of Pregel
 BSP model requires synchronous computation
 One slow machine can slow down the entire computation considerably

 Shortcomings of Dryad
 Very flexible but steep learning curve for the programming model

26© Carnegie Mellon University in Qatar

GraphLab
 GraphLab is a framework for parallel machine learning

27

Data Graph

Shared Data Table

Scheduling

Update Functions and Scopes

© Carnegie Mellon University in Qatar

GraphLab
 In this part, the following concepts of GraphLab will

be described:

 Motivation for GraphLab
 GraphLab Data Model and Update Mechanisms
 Scheduling in GraphLab
 Consistency Models in GraphLab
 PageRank in GraphLab

28© Carnegie Mellon University in Qatar

Data Graph
 A graph in GraphLab is associated with data at every vertex and edge

29

Data Graph

 Arbitrary blocks of data can be assigned to vertices and edges

© Carnegie Mellon University in Qatar

Update Functions
 The data graph is modified using update functions

 The update function can modify a vertex v and its neighborhood, defined as the
scope of v (Sv)

30

v

Sv

© Carnegie Mellon University in Qatar

Shared Data Table

 Certain algorithms require global information that is shared among
all vertices (Algorithm Parameters, Statistics, etc.)
 GraphLab exposes a Shared Data Table (SDT)

 SDT is an associative map between keys and arbitrary blocks
of data
 T[Key] → Value

 The shared data table is updated using the sync mechanism

31

Shared Data Table

© Carnegie Mellon University in Qatar

Sync Mechanism
 Similar to Reduce in MapReduce

 User can define fold, merge and apply functions that are triggered during the
global sync mechanism

 Fold function allows the user to sequentially aggregate information across
all vertices

 Merge optionally allows user to perform a parallel tree reduction on the
aggregated data collected during the fold operation

 Apply function allows the user to finalize the resulting value from the
fold/merge operations (such as normalization etc.)

32

sync
Shared Data Table

© Carnegie Mellon University in Qatar

GraphLab
 In this part, the following concepts of GraphLab will

be described:

 Motivation for GraphLab
 GraphLab Data Model and Update Mechanisms
 Scheduling in GraphLab
 Consistency Models in GraphLab
 PageRank in GraphLab

33© Carnegie Mellon University in Qatar

Scheduling in GraphLab (1)

CPU 1

CPU 2

 The scheduler determines the order that vertices are updated

ee ff gg

kkjjiihh

ddccbbaa bb

ii
hh

aa

ii

bb ee ff

jj

cc

Sc
he

du
le

r

The process repeats until the scheduler is empty

© Carnegie Mellon University in Qatar 34

Scheduling in GraphLab (2)

 An update schedule defines the order in which update functions are
applied to vertices
 A parallel data-structure called the scheduler represents an abstract list of tasks

to be executed in Graphlab

 Base (Vertex) schedulers in GraphLab
 Synchronous scheduler
 Round-robin scheduler

 Job Schedulers in GraphLab
 FIFO scheduler
 Priority scheduler

 Custom schedulers can be defined by the set scheduler
 Termination Assessment

 If the scheduler has no remaining tasks
 Or, a termination function can be defined to check for convergence in the data

35© Carnegie Mellon University in Qatar

GraphLab
 In this part, the following concepts of GraphLab will

be described:

 Motivation for GraphLab
 GraphLab Data Model and Update Mechanisms
 Scheduling in GraphLab
 Consistency Models in GraphLab
 PageRank in GraphLab

36© Carnegie Mellon University in Qatar

Need for Consistency Models
 How much can computation overlap?

© Carnegie Mellon University in Qatar 37

Consistency Models in GraphLab

 GraphLab guarantees sequential consistency
 Guaranteed to give the same result as a sequential execution of the

computational steps

 User-defined consistency models
 Full Consistency
 Vertex Consistency
 Edge Consistency

38© Carnegie Mellon University in Qatar

GraphLab
 In this part, the following concepts of GraphLab will

be described:

 Motivation for GraphLab
 GraphLab Data Model and Update Mechanisms
 Scheduling in GraphLab
 Consistency Models in GraphLab
 PageRank in GraphLab

39© Carnegie Mellon University in Qatar

PageRank (1)
 PageRank is a link analysis algorithm

 The rank value indicates an importance of a particular web page

 A hyperlink to a page counts
as a vote of support

 A page that is linked to by many pages
with high PageRank receives a
high rank itself

 A PageRank of 0.5 means there is a 50% chance that a person
clicking on a random link will be directed to the document with the
0.5 PageRank

© Carnegie Mellon University in Qatar 40

PageRank (2)
 Iterate:

 Where:
 α is the random reset probability
 L[j] is the number of links on page j

1 32

4 65

© Carnegie Mellon University in Qatar 41

pagerank(i, scope){
// Get Neighborhood data
(R[i], Wij, R[j]) scope;

// Update the vertex data

// Reschedule Neighbors if needed
if R[i] changes then
reschedule_neighbors_of(i);

}

;][)1(][
][

∈

×−+←
iNj

ji jRWiR αα

PageRank Example in GraphLab
 PageRank algorithm is defined as a per-vertex operation working on the scope

of the vertex

Dynamic
computation

© Carnegie Mellon University in Qatar 42

43

How MapReduce, Pregel,
Dryad and GraphLab

Compare Against Each
Other?

© Carnegie Mellon University in Qatar

Comparison of the Programming
Models

MapReduce Pregel Dryad GraphLab

Programming
Model

Fixed Functions –
Map and Reduce

Supersteps over a
data graph with
messages passed

DAG with program
vertices and data
edges

Data graph with
shared data table
and update functions

44

MapReduce Pregel Dryad GraphLab

Programming
Model

Fixed Functions –
Map and Reduce

Supersteps over a
data graph with
messages passed

DAG with program
vertices and data
edges

Data graph with
shared data table
and update functions

Parallelism Concurrent execution
of tasks within map
and reduce phases

Concurrent execution
of user functions over
vertices within a
superstep

Concurrent execution
of vertices during a
stage

Concurrent execution
of non-overlapping
scopes, defined by
consistency model

MapReduce Pregel Dryad GraphLab

Programming
Model

Fixed Functions –
Map and Reduce

Supersteps over a
data graph with
messages passed

DAG with program
vertices and data
edges

Data graph with
shared data table
and update functions

Parallelism Concurrent execution
of tasks within map
and reduce phases

Concurrent execution
of user functions over
vertices within a
superstep

Concurrent execution
of vertices during a
stage

Concurrent execution
of non-overlapping
scopes, defined by
consistency model

Data Handling Distributed file
system

Distributed file
system

Flexible data
channels: Memory,
Files, DFS etc.

Undefined – Graphs
can be in memory or
on disk

MapReduce Pregel Dryad GraphLab

Programming
Model

Fixed Functions –
Map and Reduce

Supersteps over a
data graph with
messages passed

DAG with program
vertices and data
edges

Data graph with
shared data table
and update functions

Parallelism Concurrent execution
of tasks within map
and reduce phases

Concurrent execution
of user functions over
vertices within a
superstep

Concurrent execution
of vertices during a
stage

Concurrent execution
of non-overlapping
scopes, defined by
consistency model

Data Handling Distributed file
system

Distributed file
system

Flexible data
channels: Memory,
Files, DFS etc.

Undefined – Graphs
can be in memory or
on disk

Task Scheduling Fixed Phases –
HDFS Locality based
map task assignment

Partitioned Graph
and Inputs assigned
by assignment
functions

Job and Stage
Managers assign
vertices to avaiabled
daemons

Pluggable schedulers
to schedule update
functions

MapReduce Pregel Dryad GraphLab

Programming
Model

Fixed Functions –
Map and Reduce

Supersteps over a
data graph with
messages passed

DAG with program
vertices and data
edges

Data graph with
shared data table
and update functions

Parallelism Concurrent execution
of tasks within map
and reduce phases

Concurrent execution
of user functions over
vertices within a
superstep

Concurrent execution
of vertices during a
stage

Concurrent execution
of non-overlapping
scopes, defined by
consistency model

Data Handling Distributed file
system

Distributed file
system

Flexible data
channels: Memory,
Files, DFS etc.

Undefined – Graphs
can be in memory or
on disk

Task Scheduling Fixed Phases –
HDFS Locality based
map task assignment

Partitioned Graph
and Inputs assigned
by assignment
functions

Job and Stage
Managers assign
vertices to avaiabled
daemons

Pluggable schedulers
to schedule update
functions

Fault Tolerance DFS replication +
Task reassignment /
Speculative
execution of Tasks

Checkpointing and
superstep re-
execution

Vertex and Edge
failure recovery

Synchronous and
asychronous
snapshots

MapReduce Pregel Dryad GraphLab

Programming
Model

Fixed Functions –
Map and Reduce

Supersteps over a
data graph with
messages passed

DAG with program
vertices and data
edges

Data graph with
shared data table
and update functions

Parallelism Concurrent execution
of tasks within map
and reduce phases

Concurrent execution
of user functions over
vertices within a
superstep

Concurrent execution
of vertices during a
stage

Concurrent execution
of non-overlapping
scopes, defined by
consistency model

Data Handling Distributed file
system

Distributed file
system

Flexible data
channels: Memory,
Files, DFS etc.

Undefined – Graphs
can be in memory or
on disk

Task Scheduling Fixed Phases –
HDFS Locality based
map task assignment

Partitioned Graph
and Inputs assigned
by assignment
functions

Job and Stage
Managers assign
vertices to available
daemons

Pluggable schedulers
to schedule update
functions

Fault Tolerance DFS replication +
Task reassignment /
Speculative
execution of Tasks

Checkpointing and
superstep re-
execution

Vertex and Edge
failure recovery

Synchronous and
asychronous
snapshots

Developed by Google Google Microsoft Carnegie Mellon

© Carnegie Mellon University in Qatar

References
 This presentation has elements borrowed from various papers and

presentations:

 Papers:
 Pregel: http://kowshik.github.com/JPregel/pregel_paper.pdf
 Dryad: http://research.microsoft.com/pubs/63785/eurosys07.pdf
 GraphLab: http://www.select.cs.cmu.edu/publications/paperdir/uai2010-low-gonzalez-kyrola-

bickson-guestrin-hellerstein.pdf

 Presentations:
 Dryad Presentation at Berkeley by M. Budiu:

http://budiu.info/work/dryad-talk-berkeley09.pptx
 GraphLab1 Presentation: http://graphlab.org/uai2010_graphlab.pptx
 GraphLab2 Presentation: http://graphlab.org/presentations/nips-biglearn-2011.pptx

45© Carnegie Mellon University in Qatar

Next Class

Distributed File Systems

© Carnegie Mellon University in Qatar 46

