
Cloud Computing
CS 15-319

Apache Pig, Hive and Zookeeper
Lecture 16, Mar 14, 2012

Majd F. Sakr, Mohammad Hammoud and
Suhail Rehman

1

Today…

 Last session
 BigTable Video Lecture and Discussion

 Today’s session
 Apache Pig, Hive and Zookeeper

 Announcement:
 Project update is due today

2

Going beyond MapReduce…
 MapReduce provides a simple abstraction to write distributed

programs running on large-scale systems on large amounts of data

 MapReduce is not suitable for everyone
 MapReduce abstraction is low-level and developers need to write custom

programs which are hard to maintain and reuse

 Sometimes user requirements may differ:
 Interactive processing of large log files
 Process big data using SQL syntax rather than Java programs
 Warehouse large amounts of data while enabling transactions and queries
 Write a custom distributed application but don’t want manage distributed

synchronization and co-ordination

Unstructured vs. Structured Data

 Structured Data
 Data with a corresponding

data model, such as a schema
 Fits well in relational tables
 E.g. Data in an RDBMS

 Unstructured Data
 No data model, schema
 Textual or bit-mapped

(pictures, audio, video etc.)
 E.g. Log Files, E-mails etc.

Email ID First
Name

Class Major

johndoe@cmu.edu “John” 2014 CS

janedoe@cmu.edu “Jane” 2013 IS

Relational Database Table

123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET
/pics/wpaper.gif HTTP/1.0" 200 6248
"http://www.jafsoft.com/asctortf/" "Mozilla/4.05 (Macintosh; I;
PPC)"

123.123.123.123 - - [26/Apr/2000:00:23:47 -0400] "GET
/asctortf/ HTTP/1.0" 200 8130
"http://search.netscape.com/Computers/Data_Formats/Docum
ent/Text/RTF" "Mozilla/4.05 (Macintosh; I; PPC)"

123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET
/pics/5star2000.gif HTTP/1.0" 200 4005
"http://www.jafsoft.com/asctortf/" "Mozilla/4.05 (Macintosh; I;
PPC)"

Apache Web Server Log
From: http://www.jafsoft.com/searchengines/log_sample.html

schema

Hadoop Spin-offs

5

Hadoop

Pig Hive

Zookeeper

Why Pig?
 Many ways of dealing with small amounts of data:
 Unstructured Logs on single machine: awk, sed, grep etc.
 Structured Data: SQL queries through an RDBMS

 How to process giga/tera/peta-bytes of unstructured data?
 Web crawls, log files, click streams
 Converting log files into database entries is tedious

 SQL syntax may not be ideal
 Strict syntax, not suited for scripting–centric programmers

 MapReduce is tedious!
 Rigid data flow – Map and Reduce
 Custom code for common operations such as joins – and difficult!
 Reuse is difficult

Apache Pig
 Pig latin language
 High-level language to express operations on data
 User specifies the operations on the data as a query execution plan in

Pig Latin

 Apache Pig framework
 Interprets and executes pig latin programs into MapReduce jobs
 Grunt – a command line interface to pig
 Pig Pen – debugging environment

Pig Use Cases
 Ad-hoc analysis of unstructured data
 Web crawls, log files, click streams

 Pig is an excellent ETL tool
 “Extract, Transform, Load” for pre-processing data before loading it into

a data warehouse

 Rapid Prototyping for Analytics
 You can experiment with large data sets before you write custom

applications

Design Goals of Pig Latin
 Dataflow language

 Operations are expressed as a sequence of steps, where each step
performs only a single high-level data transformation

 Unlike SQL where the query should encapsulate most of the operation
required

 Quick start and interoperability
 Quickly load flat files and text files, output can also be tailored to user needs
 Schemas are optional, i.e., fields can be referred to by position ($1, $4 etc.)

 Fully nested data model
 A field can be of any data type, a data type can encapsulate any other data

type

 UDFs as first-class citizens
 User defined functions can take in any data type and return any data type
 Unlike SQL which restricts function parameters and return types

Pig Latin – Data Types
 Data types
 Atom: Simple atomic value
 Tuple: A tuple is a sequence of fields, each can be any of the data types
 Bag: A bag is a collection of tuples
 Map: A collection of data items that is associated with a dedicated atom

Atom Tuple Bag Map

Pig Latin – Expressions

Expression Type Example Value for tuple t
Constant ‘bob’ Independent of t

Field by position $0

Field by name f3

Projection f2,$0

Map Lookup f3#’age’

Function Evaluation SUM(f2.$1)

Conditional Expression F3#’age’>18?
‘adult’:’minor’

Flattening FLATTEN(f2)

f1 f2 f3

Pig Latin – Commands / Operators (1)
 LOAD – Specify input data

 queries = LOAD ‘query_log.txt’ USING myLoad()

AS (userId, querystring, timestamp);
• myLoad() is a user defined function (UDF)

alice,lakers,1
bob,iPod,3

 FOREACH – Per-tuple processing
 expanded_queries = FOREACH queries GENERATE userId,

expandQuery(queryString);

Text File queries
(userId, queryString, timestamp)

LOAD

queries
(userId, queryString, timestamp)

FOREACH queries GENERATE userId,
expandQuery(queryString);

Pig Latin – Commands / Operators (2)

 FLATTEN – Remove nested data in tuples

 FILTER – Discarding unwanted data

FLATTEN(expandedQueries);

FILTER expandedQueries BY
userId == ‘alice’

Pig Latin – Commands / Operators (3)

 COGROUP – Getting related data together
 grouped_data = COGROUP results BY queryString,

revenue BY queryString;

results:
(queryString, url, rank)

revenue:
(queryString, adSlot, amount)

COGROUP
grouped_data:

(group, results, revenue)

GROUP is a special case of COGROUP

Pig Latin – Commands / Operators (4)

 JOIN – Cross product of two tables
 join_result = JOIN results BY queryString,

revenue BY queryString;
results:

(queryString, url, rank)

revenue:
(queryString, adSlot, amount)

JOIN join_results:
(queryString, url, rank, adSlot, revenue)

JOIN is the same as COGROUP + FLATTEN

Pig Latin – Commands / Operators (5)

 STORE – Create output
 final_result = STORE join_results INTO ‘myoutput’,

USING myStore();

lakers, nba.com, 1, top, 50
lakers, nba.com, 1, side, 20
lakers, espn.com, 2, top, 50
lakers, espn.com, 2, side, 20
kings, nhl.com, 1, top, 30
kings, nhl.com, 1, side, 10
kings, nba.com, 2, top, 30
kings, nba.com, 2, side, 10

Text File

myoutput

STORE

join_results:
(queryString, url, rank, adSlot, revenue)

Architecture of Pig

Grunt
(CLI)

PigPen

Pig
Driver

Hadoop
Cluster

Execution on Hadoop

MapReduce Plan

Physical to MapReduce Plan Translator

Physical Plan

Logical to Physical Translator

Logical Plan

Query Parser Semantic Checking Logical Optimizer

Interpretation of a Pig Program
 The Pig interpreter parses each command and builds a logical plan

for each bag created by the user.
 The logical plan is converted to a physical plan
 Pig then creates an execution plan of the physical plan with maps

and reduces
 Execution starts only after output is requested– lazy compilation

LOAD FILTER GROUP COGROUP COGROUP

LOAD

map1 reduce1

mapi

reducei mapi+1 reducei+1

Hadoop Spin-offs

19

Hadoop

Pig Hive

Zookeeper

Motivation for Hive
 Organizations that have been using SQL-based RDBMS for storage

 Oracle, MSSQL, MySQL etc.

 The RDBMS has grown beyond what one server can handle
 Storage can be expanded to a limit
 Processing of Queries is limited by the computational power of a single server

 Traditional business analysts with SQL experience
 May not be proficient at writing Java programs for MapReduce
 Require SQL interface to run queries on TBs of data

Apache Hive
 Hive is a data warehouse infrastructure built on top of Hadoop that

can compile SQL-style queries into MapReduce jobs and run these
jobs on a Hadoop cluster
 MapReduce for execution
 HDFS for storage

 Key principles of Hive’s design:
 SQL Syntax familiar to data analysts
 Data that does not fit traditional RDBMS systems
 To process terabytes and petabytes of data
 Scalability and Performance

Hive Use Cases
 Large-scale data processing with SQL-style syntax:

Predictive Modeling &
Hypothesis Testing

Customer Facing Business
Intelligence

Document Indexing Text Mining & Data
Analysis

Hive Components
 HiveQL

 Subset of SQL with extensions for loading and storing

 Hive Services
 The Hive Driver – compiler, executor engine
 Web Interface to Hive
 Hive Hadoop Interface to the JobTracker and NameNode

 Hive Client Connectors
 For existing Thrift, JDBC and ODBC applications

Hive Data Model
 Tables

 Similar to Tables in RDBMS
 Each Table is a unique directory in HDFS

 Partitions
 Partitions determine the distribution of data within a table.
 Each partition is a sub-directory of the main directory in HDFS

 Buckets
 Partitions can be further divided into buckets.
 Each bucket is stored as a file in the directory

1 2

HDFS /wh/t
HDFS Path

1 2

HDFS /wh/t/2
HDFS Path

1 2

HDFS /wh/t/2/part-0000.part
HDFS Path

HiveQL Commands

 Data Definition Language
 Used to describe, view and alter tables.
 For E.g. CREATE TABLE and DROP TABLE commands with extensions to

define file formats, partitioning and bucketing information

 Data Manipulation Language
 Used to load data from external tables and insert rows using the LOAD and

INSERT commands

 Query Statements
 SELECT
 JOIN
 UNION
 etc.

User-Defined Functions in Hive
 Four Types
 User Defined Functions (UDF)

 Perform tasks such as Substr, Trim etc. on data elements

 User Defined Aggregation Functions (UDAF)
 Performed on Columns
 Sum, Average, Max, Min… etc.

 User Defined Table-Generating Functions (UDTF)
 Outputs a new table
 Explode is an example – similar to FLATTEN() in Pig.

 Custom MapReduce scripts
 The MR scripts must read rows from standard output
 Write rows to standard input.

Architecture of Hive

Traditional
DB

Hadoop
Cluster

CLI

Hive
Server

Hive Web
Interface

Driver
(Compiler,
Optimizer
Executor)

Metastore

HDFS
Client

JobClient

Hive Clients Hive Services Compute and
Storage Back-ends

Thrift
Application

Hive Thrift
Client

JDBC
Application

Hive JDBC
Client

ODBC
Application

Hive
ODBC
Client

Data Analyst /
SQL Programmer

Compilation of Hive Programs

Execution in Hadoop

Physical Plan Generator

Logical plan is converted into a physical plan, which is a DAG of Map-Reduce jobs.

Optimizer

Multiple passes over the logical plan and rewrites it Combines Multiple joins, reduces the number of MR
jobs, etc.

Logical Plan Generator

Converts the internal query representation into a logical execution plan

Semantic Analyzer
Retrieves the schema and verifies the validity of the

query. Transforms the query into an internal representation

Parser

Parses the query string into a parse tree representation

Hadoop

Pig Hive

Zookeeper

Hadoop Spin-offs

29

Why ZooKeeper?
 Writing distributed applications is hard

 Need to deal with synchronization, concurrency , naming, consensus,
configuration etc.

 Well known algorithms exist for each of these problems
 But programmers have to re-implement them for each distributed application they

write.

 Master-slave architecture is popular for distributed applications
 But how do you deal with master failures?
 Single master can quickly become the performance bottleneck for many

distributed applications.

What is Apache ZooKeeper?
 ZooKeeper is a distributed co-ordination service for large-scale

distributed systems

 ZooKeeper allows application developers to build the following
systems for their distributed application:
 Naming
 Configuration
 Synchronization
 Organization
 Heartbeat systems
 Democracy / Leader election

Zookeeper Ensemble

ZooKeeper Architecture

Server Server Server Server Server
Leader

Client Client Client Client Client Client Client Client

Client Interactions with Zookeeper

 Clients must have the list of all the zookeeper servers in the
ensemble
 Clients will attempt to connect to the next server in the ensemble if one fails

 Once a client connects to a server, it creates a new session
 The application can set the session timeout value
 Session is kept alive through the heartbeat mechanism.
 Failure events are automatically handled and watch events are delivered to the

client on reconnection.

Zookeeper Data Model
 Similar to a filesystem

 Hierarchical layout to denote a
membership list.

 Each node is known as a znode
 znodes can be ephemeral or persistent
 An ephemeral znode exists as long as

the session of the client who created it.
 Ephemeral znodes cannot have

children.
 Sequential znodes are persistent and

have a sequence number attached.
 For e.g. if a second goat znode is

declared under /zoo, it will be
/zoo/goat2 etc.

 Znodes can store data and have an
associated ACL
 Size limit of 1 MB per znode
 Sanity check as its more than enough

to store configuration/state information

/zoo

/

/zoo/
duck

/zoo/
goat

/zoo/
cow

ZooKeeper API
Operation Description

create Creates a znode

delete Deletes a znode (znode should not have any children)

exists Tests if a znode exists and retrieves its metadata

getACL, setACL Gets/sets ACL for a znode

getChildren Gets a list of children for a znode

getData, setData Gets and sets data for a znode

sync Synchronizes a client’s view of a znode with ZooKeeper

Reads, Writes and Watches
 Reads can be collected from any server.
 Write requests are always forwarded to the leader which commits

the write to a majority of servers atomically

 A watch can be optionally set on a znode after a read operation to
monitor if it has been deleted or changed.
 A watch is triggered when there is an update to a specific znode and it can be

used to notify clients that have read the znode.

Zookeeper Ensemble

Server Server Server
Leader

Client Client Client Client Client Client

Zookeeper Protocol : Zab
 Zab ensures zookeeper can keep its promises to clients. It is a two

phase protocol
 Phase 1: Leader Election

 All the members of the ensemble elect a distinguished member, called the leader
and other members are designated as followers.

 The election is declared complete when a majority (quorum) of followers have
synchronized the state with the leader

 Phase 2: Atomic Broadcast
 Write requests are always forwarded to the leader
 The update is broadcast to all the followers.
 The leader then commits the update when a majority of followers have persisted

the change
 The writes thus happen atomically in accordance with a two-phase commit (2PC)

protocol

Zookeeper guarantees…
 That every modification to the znode tree is replicated to a majority of

the ensemble

 That fault tolerance is achieved
 As long as a majority of the nodes in the ensemble are active.
 Ensembles are typically configured to be an odd number.

 That every update is sequentially consistent

 That all updates to the znode state are atomic

 That every client sees only a single system image

 That updates are durable and persist, in spite of server failures.

 That client’s view is timely and is not out-of-date

Creating Higher-level Constructs
with Zookeeper

 Barrier
 Creating a barrier for distributed clients is easy.
 Designate a barrier node, and clients check if it exists.

/bClient Client
exists()

true
Wait for barrier
znode deletion

watch event

/b

exists()

false
Proceed

 Queue
 create() sequential znodes under a parent to designate queue items.
 Queue can be processed using a getchildren() call on the /q item. A watch

can notify client of new items on the queue

/qClient
create(/q/i-)

/q/i-1 /q/i-n/q/i-2

Next Class

Virtualization

