
Cloud Computing
CS 15-319

Virtualization- Part III
Lecture 19, April 2, 2012

Majd F. Sakr and Mohammad Hammoud

1



Today…

 Last session
 Virtualization Part II

 Today’s session
 Virtualization – Part III

 Announcement:
 Project update/discussion is due on Wed April, 4

2



Objectives

Discussion on Virtualization

Virtual machine 
types

Partitioning and 
Multiprocessor 
virtualization

Resource 
virtualization

Why virtualization, 
and virtualization 
properties

Virtualization, 
para-
virtualization, 
virtual machines 
and hypervisors

Resource 
virtualization



Resource Virtualization

4

Resource Virtualization

CPU Virtualization I/O VirtualizationI/O VirtualizationMemory VirtualizationMemory Virtualization



CPU Virtualization
 Interpretation and Binary Translation
 Virtualizable ISAs



CPU Virtualization
 Interpretation and Binary Translation
 Virtualizable ISAs



Binary Translation
 Performance can be significantly enhanced by mapping each

individual source binary instruction to its own customized target code

 This process of converting the source binary program into a target
binary program is referred to as binary translation

 Binary translation attempts to amortize the fetch and analysis
costs by:

1. Translating a block of source instructions to a block of target instructions
2. Caching the translated code for repeated use



Binary Translation
Source Code

Binary 
Translator

Binary Translated Target
Code

Source Code Interpreter 
Routines

Predecoder

Intermediate Code

Direct Threaded 
Interpretation Binary 

Translation



Static Binary Translation
 It is possible to binary translate a program in its entirety before

executing the program

 This approach is referred to as static binary translation

 However, in real code using conventional ISAs, especially CISC
ISAs, such a static approach can cause problems due to:

 Variable-length instructions
 Data interspersed with instructions
 Pads to align instructions
 Register indirect jumps

Inst. 1 Inst. 2
Inst. 3 jump

Reg. Data
Inst. 5 Inst. 6

Uncond. Branch Pad
Inst. 8

Data in instruction 
stream

Pad for instruction
alignment

Jim indirect to ???



Dynamic Binary Translation

Source Program 
Counter (SPC) to 
Target Program 
Counter (TPC)

Map Table

Emulation 
Manager

Interpreter Translator

Miss

Hit

Code Cache

 A general solution is to translate the binary while the program is
operating on actual input data (i.e., dynamically) and interpret new
sections of code incrementally as the program reaches them

 This scheme is referred to as dynamic binary translation



Dynamic Binary Translation
Start 
with 
SPC

Look Up 
SPCTPC 

in Map Table

Hit in 
Table

Use SPC to 
Read Instructions 

from Source 
Memory Image

-----------------------
Interpret, 

Translate, and 
Place into Code 

Cache

Write New 
SPCTPC 

Mapping into 
Map Table

Branch to TPC 
and Execute 
Translated 

Block

Get SPC for 
Next Block

No

Yes



CPU Virtualization
 Interpretation and Binary Translation
 Virtualizable ISAs



Privilege Rings in a System
 In the ISA, special privileges to system resources are permitted by defining

modes of operations

 Usually an ISA specifies at least two modes of operation:
1. System (also called supervisor, kernel, or privileged) mode: all

resources are accessible to software
2. User mode: only certain resources are accessible to software

System 
Mode

User Mode

Kernel
Level 0

Level 1

Level 2

Level 3

Apps
(User Level)

Simple systems have 2 rings
Intel’s IA-32 allows 4 rings



Privileged Instructions
 In a native system VM, the VMM runs in system mode, and all “other”

(e.g., guest OS) software run in user mode

 A privileged instruction is defined as one that traps if the machine is
in user mode and does not trap if the machine is in system mode

 Examples of Privileged Instructions are:

 Load PSW: If it can be accessed in user mode, a malicious user
program can put itself in system mode and get control of the system

 Set CPU Timer: If it can be accessed in user mode, a malicious user
program can change the amount of time allocated to it before getting
context switched



Types of Instructions
 Instructions that interact with hardware can be classified into

three categories:

1. Control-sensitive: Instructions that attempt to change the
configuration of resources in the system (e.g., memory assigned
to a program)

2. Behavior-sensitive: Instructions whose behaviors or results depend
on the configuration of resources

3. Innocuous: Instructions that are neither control-sensitive nor
behavior-sensitive



Virtualization Theorm
 Virtualization Theorem: For any conventional third-generation computer, a

VMM may be constructed if the set of sensitive instructions for that computer is
a subset of the set of privileged instructions [Popek and Goldberg, 1974]

Privileged

Sensitive

Nonprivileged

Privileged

Sensitive

User

Does not satisfy the theorem Satisfies the theorem

Critical



Efficient VM Implementation
 An OS running on a guest VM should not be allowed to change

hardware resources (e.g., executing PSW and set CPU timer)

 Therefore, guest OSs are all forced to run in user mode

An efficient VM implementation can be constructed if instructions that 
could interfere with the correct or efficient functioning of the VMM 

always trap in the user mode



Trapping To VMM

Dispatcher

Interpreter 
Routine 1

Interpreter 
Routine 2

•
•
•

Interpreter 
Routine n

Allocator

Instruction Trap Occurs

Privileged
Instruction

Privileged
Instruction

Privileged
Instruction

Privileged
Instruction

These instructions do not
change machine resources 
but access privileged resources
(e.g., IN, OUT, Write TLB)

These instructions desire to
change machine resources 
(e.g., load relocation bounds 
register)



Handling Privileged Instructions

Guest OS code in VM
(user mode)

Privileged Instruction 
(LPSW)

•
•
•

Next Instruction (Target of 
LPSW)

VMM code
(privileged mode)

Dispatcher

LPSW Routine:
Change mode to privileged 
Check privilege level in VM
Emulate Instruction
Compute target
Restore mode to user
Jump to target



Critical Instructions
 Critical instructions are sensitive but not privileged– they do not generate

traps in user mode

 Intel IA-32 has several critical instructions

 An example is POPF in IA-32 (Pop Stack into Flags Register) which pops
the flag registers from a stack held in memory

 One of the flags is the interrupt-enable flag, which can be modified only
in the privileged mode

 In the user mode, POPF can overwrite all flags except the
interrupt-enable flag (for this it acts as no-op)

Can an efficient VMM be constructed with the presence of critical instructions?



Handling Critical Instructions
 Critical Instructions are problematic and they inhibit the creation of an

efficient VMM

 However, if an ISA is not efficiently virtualizable, this does not mean
we cannot create a VMM

 The VMM can scan the guest code before execution, discover all
critical instructions, and replace them with traps (system calls)
to the VMM

 This replacement process is known as patching

 Even if an ISA contains only ONE critical instruction, patching will be
required



Patching of Critical Instructions

Scanner 
and Patcher

Trap to 
VMM

Code patch for 
discovered 
critical instruction

Original Code
Patched Code



Code Caching
 Some of the critical instructions that trap to the VMM

might require interpretation

 Interpretation overhead might slow down the VMM especially if the
frequency of critical instructions requiring interpretations increases

 To reduce overhead, interpreted instructions can be cached, using a
strategy known as code caching

 Code caching is done on a block of instructions surrounding the
critical instruction (larger blocks lend themselves
better to optimization)



Caching Interpreted Code

Control Transfer,
e.g., trap

VMM

Specialized 
Emulation Routines

Patched Program

Block 1
Code section 
emulated in code
cache

Block 3

Two critical instructions 
combined into a 
single block.

Block 1

Block 2

Block 3

Code 
Cache

Translation 
Table

Block 2



Resource Virtualization

25

Resource Virtualization

CPU Virtualization I/O VirtualizationI/O VirtualizationMemory Virtualization



Memory Virtualization
 Virtual memory makes a distinction

between the logical view of memory as
seen by a program and the actual
hardware memory as managed
by the OS

 The virtual memory support in
traditional OSs is sufficient for providing
guest OSs with the view of having (and
managing) their own real memories

 Such an illusion is created by the
underlying VMM

Virtual Memory Address 
(seen by a program running on OS)

Physical Memory Address

In Real Machine

Virtual Memory Address
(seen by a program running on guest OS)

Real Memory Address

In Virtual Machine

Physical Memory Address



An Example

1000

2000

Virtual Memory of 
Program 1 onVM1

1500

3000

5000

Real Memory of VM1

1000

4000

Virtual Memory of 
Program 2 onVM1

Not Mapped

Real Memory of VM2

1000

4000

Virtual Memory of 
Program 3 onVM2

500

3000

500

3000

Physical Memory 
of System

1000

Virtual 
Page

Real 
Page

--- ---

1000 5000

--- ---

2000 1500

--- ---

Virtual 
Page

Real 
Page

--- ---

1000 Not mapped

--- ---

4000 3000

--- ---

Page Table for 
Program 1

Page Table for 
Program 2

Virtual 
Page

Real 
Page

--- ---

1000 500

--- ---

4000 3000

--- ---

Page Table for 
Program 3

VM1
Real 
Page

Physical
Page

--- ---

1500 500

3000 Not mapped

5000 1000

--- ---

Real Map Table for VM1 at VMM

VM1
Real 
Page

Physical
Page

--- ---

500 3000

--- ---

3000 Not mapped

--- ---

Real Map Table for VM2 at VMM



Resource Virtualization

28

Resource Virtualization

CPU Virtualization I/O VirtualizationMemory Virtualization



I/O Virtualization
 The virtualization strategy for a given I/O device type consists of:

1. Constructing a virtual version of the device
2. Virtualizing the I/O activities directed to the device

 A virtual device given to a guest VM is typically (but not necessarily)
supported by a similar, underlying physical device

 When a guest VM makes a request to use the virtual device, the
request is intercepted by the VMM

 The VMM converts the request to the equivalent request
understood by the underlying physical device and sends it out



Virtualizing Devices
 The technique that is used to virtualize an I/O device depends on

whether the device is shared and, if so, the ways in which it
can be shared

 The common categories of devices are:

 Dedicated devices
 Partitioned devices
 Shared devices
 Spooled devices



Dedicated Devices
 Some I/O devices must be dedicated to a particular guest VM or at

least switched from one guest to another on a very long time scale

 Examples of dedicated devices are: the display, mouse, and
speakers of a VM user

 A dedicated device does not necessarily have to be virtualized

 Requests to and from a dedicated device in a VM can theoretically
bypass the VMM

 However, in practice these requests go through the VMM because
the guest OS runs in a non-privileged user mode



Partitioned Devices
 For some devices it is convenient to partition the available resources

among VMs

 For example, a disk can be partitioned into several smaller virtual disks that
are then made available to VMs as dedicated devices

 A location on a magnetic disk is defined in terms of cylinders, heads, and
sectors (CHS)

 The physical properties of the disk are virtualized by the
disk firmware

 The disk firmware transforms the CHS addresses into consecutively
numbered logical blocks for use by host and guest OSs



Disk Virtualization
 To emulate an I/O request for a virtual disk:

The VMM uses a map to translate the virtual parameters into
real parameters

The VMM then reissues the request to the disk controller

CHSLBA

000
001
002
003
004

Host 
OS

V
M

M

Guest 
OS

Guest 
OSPhysical Disk Drive

(CHS)
Logical Block Addresses

(LBAs)

0006
---

0002
0008

---
0002

---
0005

Real Block Addresses

Real Block Addresses

VM1

VM2



Shared Devices
 Some devices, such as a network adapter, can be shared among a

number of guest VMs at a fine time granularity

 For example, every VM can have its own virtual network address
maintained by the VMM

 A request by a VM to use the network is translated by the VMM to a
request on a physical network port
 To make this happen, the VMM uses its own physical network address

and a virtual device driver

 Similarly, incoming requests through various ports are translated into
requests for virtual network addresses associated with different VMs



Network Virtualization- Scenario I
 In this example, we assume that the virtual network interface card

(NIC) is of the same type as the physical NIC in the host system

User on VM1

User sends 
message to 
external machine 
(e.g., using 
send())

OS on VM1

OS converts into 
I/O instructions 
for virtual NIC, 
(e.g., OUTS 
0xf0…)

VMM
VMM sends 
packet on virtual 
bridge to device 
driver of physical 
NIC (e.g., OUTS 
0x280, …)

Device Driver

NIC device driver 
launches packet 
on network using 
wire signals

To Network



Network Virtualization- Scenario II
 In this scenario, we assume that the desired communication is

between two virtual machines on the same platform

User on VM1

User sends 
message to local 
virtual machine
(e.g., using 
send())

OS on VM1

OS converts into 
I/O instructions 
(e.g., OUTS 
0xf0…)

VMM
VMM sends 
packet on virtual 
bridge to device 
driver of physical 
NIC (e.g., OUTS 
0x280, …)

VMM raises 
interrupt in 
receiver’s OS

Device Driver

NIC device driver 
converts send 
message to a 
receive message 
for receiving VM

OS on VM2

Interrupt handler 
in OS generates 
I/O instructions to 
receive packet

User on VM2

Receiver gets 
packet



Spooled Devices
 A spooled device, such as a printer, is shared, but at a much higher

granularity than a device such as a network adapter

 Virtualization of spooled devices can be performed by using a
two-level spool table approach:
 Level 1 is within the guest OS, with one table for each active process
 Level 2 is within the VMM, with one table for each guest OS

 A request from a guest OS to print a spool buffer is intercepted by the
VMM, which copies the buffer into one of its own spool buffers

 This allows the VMM to schedule requests from different guest OSs
on the same printer



38

Thank You!


