Announcements

• Checkpoint Quiz Unit 5, due on:
 – Friday May 3\(^{rd}\) at midnight

• Project 4, Part c, due on:
 – Friday May 3\(^{rd}\) at midnight

• Last Recitation (#15):
 – Tuesday, April 30th
Announcements

• Open up S3 location of hand ins:
 – Give access to your S3 bucket to:
 • public
 • onlinecloudcomputingcourse@gmail.com
 – You could lose credit or be penalized otherwise
 – See Piazza Post on how to open up your handin directory

• Encounter a general bug:
 – Post on Piazza

• Encounter a grading bug:
 – Post Privately on Piazza

• Post feedback on OLI
Project 4 Student Progress

• Part b: Input Text Predictor: N-gram Generation
 – 97% Students Completed

• Stats:
 – Total n-grams generated from the Gutenberg Dataset:
 • Approximately 477 million
 – Fastest Computation
 • 16 minutes 48 seconds
 • 19 c1.xlarge @ $0.07 spot price
 • Cluster cost: $1.3 per hour
 – Slowest Computation
 • 4 m1.small (with 1000 reducers!)
 • 8 hours and 25 minutes
More MapReduce Tips

• Watch out for Whirr bugs
 – Failure to launch instances
 • Check AWS Management Console to verify
 – Failure to install and configure Hadoop correctly
 • Run `sudo jps` on Master node to verify that the Hadoop processes are running correctly. Test using example jobs or small data first.
 – Using different instance types for master and slave nodes may provision them in different zones
 – 32 bit AMIs will not work for larger instance types (m1.large – etc. need 64 bit)
New Modules

- Unit 5 – Distributed Programming and Analytics Engines for the Cloud
 - Introduction to Distributed Programming for the Cloud
 - Distributed Analytics Engines for the Cloud: MapReduce
 - Distributed Analytics Engines for the Cloud: Pregel
 - Pregel
 - The Computation and Architectural Models
 - The Data Structure and Storage
 - The Graph Flow and API
 - Architectural Model and Workflow
 - Fault Tolerance
Project 4, Part c

• Project 4, Part a
 – MapReduce
 – Project 4 Survey

• Project 4, Part b
 – Input Text Predictor: NGram Generation

• Project 4, Part c
 – Input Text Predictor: Language Model and User Interface
Recap Input Text Prediction

• Construct an Input Text Predictor

Google Suggest

WordLogic iKnowU keyboard
How to Construct an Input Text Predictor?

1. Given a language corpus
 - Project Gutenberg (2.5GB, already on S3)
 - English Language Wikipedia Articles (30GB, on S3 soon)

2. Construct an n-gram model of the corpus
 - An n-gram is a phrase with n words.
 - For example a set of 1,2,3,4,5-grams with counts:
 • this 1000
 • this is 500
 • this is a 125
 • this is a blue 60
 • this is a blue house 20
How to Construct an Input Text Predictor?

3. Build a statistical language model that contains the probability of a word appearing after a phrase

- \(Pr(is|this) = \frac{\text{Count}(this is)}{\text{Count}(this)} = \frac{500}{1000} = 0.5 \)

- \(Pr(a|this is) = \frac{\text{Count}(this is a)}{\text{Count}(this is)} = \frac{125}{500} = 0.25 \)

4. Store and index the words and their probabilities to use in an application
Discussions

• Your questions...
Upcoming Deadlines

• Unit 5:
 Unit 5: Distributed Programming and Analytics Engines for the Cloud
 Module 20: Distributed Analytics Engines for the Cloud: Pregel

• Project 4
 Project 4
 Module 34: Input Text Predictor: Language Model and User Interface
 Language Model Generation Checkpoint Available Now
 Due 5/3/13 11:59 PM