
15-415: Database Applications
Problem Solving Assignment 3

School of Computer Science

Carnegie Mellon University, Qatar
Spring 2014

Assigned Date: February 20, 2014

 Due Date: March 03, 2014 by 12 Midnight

I. Trees Basics [20 points]:

For the following sub-questions, consider the B+ tree structure with order d = 2 (i.e.

there are at most 4 keys per node, and at most 5 pointers to children) as shown in

Figure 1.

Figure 1: A tree with order d = 2

Q1.1 Assume the structure in Figure 1 is not a B+ tree, but an ISAM structure.

Show the new structure after inserting keys 35 and 37. [5 points]

Q1.2 Starting from the original B+ tree in Figure 1, we insert the record 4* with a

key 4. From the choices in Figure 2, which is the resulting tree if we use the

default “no redistribution” strategy: A, B, C, or neither? If neither, draw the

correct tree. [5 points]

Tree A

Tree B

Tree C

Figure 2: Alternatives for questions 1.2 and 1.3

Q1.3 Starting from the original B+ tree in Figure 1, we insert the record 4* with a

key 4. From the choices in Figure 2, which is the resulting tree if we use the

default “redistribution with a sibling” strategy: A, B, C, or neither? If neither,

draw the correct tree. [5 points]

Q1.4 Starting from the original B+ tree in Figure 1, we delete the record 16*. From

the choices in Figure 3, which is the resulting tree if we borrow a node from

the left sibling: A, B, C, or neither? If neither, draw the correct tree. [5 points]

Tree A

Tree B

Tree C

Figure 3: Alternatives for question 1.4

II. Trees in Numbers [20 points]:

Assume that you have just built a dense B+ tree index using Alternative (2) on a heap

file containing 20,000 records. The key field for this B+ tree index is a 40-byte string,

and it is a candidate key. Pointers (i.e., record ids and page ids) are (at most) 10-byte

values. The size of one disk page is 1000 bytes. The nodes at each level were filled up

as much as possible.

1. How many levels does the resulting tree have? [5 points]

2. For each level of the tree, how many nodes are at that level? [5 points]

3. How many levels would the resulting tree have if key compression is used and it

reduces the average size of each key in an entry to 10 bytes? [5 points]

4. How many levels would the resulting tree have without key compression but with

 all pages 70 percent full? [5 points]

III. Trees (Clustered vs. Un-clustered) [35 points]:

Consider the instance of the Students relation (shown in Table 1) stored in file f.

1. Construct a B+ tree index of order 2 on the gpa field using Alternative (2).

Assume that duplicates are handled using overflow pages. The tuples in f are

stored as: the first tuple is in page 1, slot1; the second is in page 2, slot 2; and so

on. Each page can store up to three tuples. You may use (page #, slot #) to

identify a tuple. Clearly indicate what the data entries are (i.e., do not use the k*

convention). [15 points]

2. Consider the following query:

SELECT sid, name FROM Students WHERE gpa >= 3.0 AND gpa <= 3.5

Calculate the IO cost of finding all the tuples that fit the criteria when (a) tuples in

f are sorted, and (b) tuples in f are unsorted (i.e., they appear in the order shown

in table 1). What do you conclude from this? [20 points]

Table 1: Instance of the students relation stored in file f

IV. Extendible Hashing [25 points]:

Assume we have the following records where we indicate the hashed key in

parenthesis (in binary):

i [001100]

h [001100]

g [101101]

f [010010]

e [111111]

d [010010]

c [100001]

b [001100]

a [000000]

Consider an Extendible Hashing structure where buckets can hold up to three records.

Initially the structure is empty (only one empty bucket). Consider the result after the

records above have been inserted in the order shown, using the lower-bits for the hash

function. As mentioned in the textbook, assume that the directory doubles in size at

each overflow.

1. What will be the global depth of the resulting directory? [2 points]

2. How many buckets will we have? [3 points]

3. List all the elements in the bucket which contains the element “i.” What is the

local depth of this bucket? [4 points]

4. List all the elements in the bucket which contains the element “c.” What is the

local depth of this bucket? [4 points]

5. Do we store the number of bits to use in the hash function in the (a) global or (b)

local depth? [4 points]

6. Consider the case that the directory just doubled. Is it true that every bucket will

be split in two? (Yes/No) [4 points]

7. If the local depth of a bucket is equal to the global depth of the directory, is this

bucket pointed to by (a) exactly one, or (b) multiple directory entry(s): [4 points]

