
Database Applications (15-415) 
 

DBMS Internals- Part VII 
Lecture 15, March 17, 2014 

Mohammad Hammoud 



Today… 

 Last Session: 

 DBMS Internals- Part VI 

 Algorithms for Relational Operations 

 

 Today’s Session: 

 DBMS Internals- Part VII 

 Algorithms for Relational Operations (Cont’d) 
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Relational Operations 
 We will consider how to implement: 

 Selection  (     ) 

 Projection  (     ) 

 Join  (        ) 

 Set-difference  (     ) 

 Union  (     ) 

 Aggregation  (SUM, MIN, etc.) and GROUP BY 

 

 Since each operation returns a relation, ops can be composed! 

 

 After we cover how to implement operations, we will discuss 
how to optimize queries (formed by composing operators) 

 

 

 

 

 

 











Assumptions 
 We assume the following two relations: 

 
 
 

 For Reserves, we assume: 
 Each tuple is 40 bytes long,  100 tuples per page, 1000 pages 

 

 For Sailors, we assume: 
 Each tuple is 50 bytes long,  80 tuples per page, 500 pages 

 

 Our cost metric is the number of I/Os   
 

 We ignore the computational and output costs 

 
 

 

 
 
 

 
 
 

Sailors (sid: integer, sname: string, rating: integer, age: real) 
 

Reserves (sid: integer, bid: integer, day: dates, rname: string) 
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The Join Operation 
 Consider the following query, Q, which implies a join: 
 

 
 

 How can we evaluate Q? 
 Compute R × S 
 Select (and project) as required 

 

 But, the result of a cross-product is typically much larger 
than the result of a join 
 

 Hence, it is very important to implement joins without 
materializing the underlying cross-product 

 

 
 
 

 
 
 

SELECT * 
FROM Reserves R, Sailors S 
WHERE R.sid = S.sid 



The Join Operation 

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not 

 
 Join algorithms which enumerate the cross-product: 

 Simple Nested Loops Join 

 Block Nested Loops Join 
 

 Join algorithms which do not enumerate the cross-product: 

 Index Nested Loops Join 

 Sort-Merge Join 

 Hash Join 
 

 
 

 

 

 

 



Assumptions 

 We assume equality joins with: 
 R represents Reserves and S represents Sailors 

 M pages in R, pR tuples per page, m tuples total 

 N pages in S, pS tuples per page, n tuples total 

 

 We will consider more complex join conditions later 

 

 Our cost metric is the number of I/Os   

 

 We ignore output and computational costs 

 
 

 
 

 

 

 

 



The Join Operation 

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not 

 
 Join algorithms which enumerate the cross-product: 

 Simple Nested Loops Join 

 Block Nested Loops Join 
 

 Join algorithms which do not enumerate the cross-product: 

 Index Nested Loops Join 

 Sort-Merge Join 

 Hash Join 
 

 
 

 

 

 

 

  



Simple Nested Loops Join 

• Algorithm #0: (naive) nested loop (SLOW!) 

 
 

 

 

 

 

 

 

R(A,..) 

S(A, ......) 

m 
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Simple Nested Loops Join 

• Algorithm #0: (naive) nested loop (SLOW!) 

 
 

 

 

 

 

 

 

R(A,..) 

S(A, ......) 

m 

n 

for each tuple r of R 
for each tuple s of S 

print, if they match 



Simple Nested Loops Join 

• Algorithm #0: (naive) nested loop (SLOW!) 

 
 

 

 

 

 

 

 

R(A,..) 

S(A, ......) 

m 

n 

for each tuple r of R 
for each tuple s of S 

print, if they match 

Outer Relation 

Inner Relation 



Simple Nested Loops Join 

• Algorithm #0: (naive) nested loop (SLOW!) 
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S(A, ......) 
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How many disk accesses (‘M’ and ‘N’ are the 
numbers of pages for ‘R’ and ‘S’)? 



Simple Nested Loops Join 

• Algorithm #0: (naive) nested loop (SLOW!) 

 
 

 

 

 

 

 

 

R(A,..) 

S(A, ......) 

m 

n 

How many disk accesses (‘M’ and ‘N’ are the 
numbers of pages for ‘R’ and ‘S’)? 

I/O Cost = M+m*N 



Simple Nested Loops Join 

• Algorithm #0: (naive) nested loop (SLOW!) 

 
 

 

 

 

 

 

 

R(A,..) 

S(A, ......) 

m 

n 

- Cost = (pR * M) * N + M  = 100*1000*500+1000 I/Os 
- At 10ms/IO, total = ~6days (!) 

I/O Cost = M+m*N 

Can we do better? 



Nested Loops Join: A Simple Refinement 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Algorithm: 

 Read in a page of R 

 Read in a page of S 

 Print matching tuples COST= ? 



R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Algorithm: 

 Read in a page of R 

 Read in a page of S 

 Print matching tuples COST= M+M*N 

Nested Loops Join: A Simple Refinement 



Nested Loops Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Which relation should be the outer? 

COST= M+M*N 



Nested Loops Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Which relation should be the outer? 

 A: The smaller (page-wise) 

COST= M+M*N 



Nested Loops Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 M=1000, N=500 - if larger is the outer: 

 Cost = 1000 + 1000*500 = 501,000  

 = 5010 sec ~ 1.4h 
COST= M+M*N 



Nested Loops Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 M=1000, N=500 - if smaller is the outer: 

 Cost = 500 + 1000*500 = 500,500  

 = 5005 sec ~ 1.4h 
COST= N+M*N 



Simple Nested Loops Join 

 What if we do not apply the page-oriented 
refinement? 
 Cost = (pR * M) * N + M  = 100*1000*500+1000 I/Os 
 At 10ms/IO, total = ~6days (!) 

 

 What if we apply the page-oriented refinement? 
 Cost = M * N + M  = 1000*500+1000 I/Os 
 At 10ms/IO, total = 1.4 hours (!) 

 

 What if the smaller relation is the outer? 
 Slightly better 

 
 
 

 
 
 

 
 
 



The Join Operation 

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not 

 
 Join algorithms which enumerate the cross-product: 

 Simple Nested Loops Join 

 Block Nested Loops Join 
 

 Join algorithms which do not enumerate the cross-product: 

 Index Nested Loops Join 

 Sort-Merge Join 

 Hash Join 
 

 
 

 

 

 

 

  



Block Nested Loops 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 What if we have B buffer pages available? 



Block Nested Loops 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 What if we have B buffer pages available? 

 A: give B-2 buffer pages to outer, 1 to inner, 

1 for output 



Block Nested Loops 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Algorithm: 

 Read in B-2 pages of R 

 Read in a page of S 

 Print matching tuples 
COST= ? 



Block Nested Loops 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Algorithm: 

 Read in B-2 pages of R 

 Read in a page of S 

 Print matching tuples 
COST= M+M/(B-2)*N 



Block Nested Loops 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

• And, actually: 

• Cost = M + ceiling(M/(B-2)) * N 

COST= M+M/(B-2)*N 



Block Nested Loops 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

• If the smallest (outer) relation fits in memory?  

• That is, B= N+2 

• Cost =? 



Block Nested Loops 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

• If the smallest (outer) relation fits in memory?  

• That is, B= N+2 

• Cost =N+M (minimum!) 



Nested Loops - Guidelines 

 Pick as outer the smallest table  
(= fewest pages) 

 

 Fit as much of it in memory as possible 

 

 Loop over the inner 



The Join Operation 

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not 

 
 Join algorithms which enumerate the cross-product: 

 Simple Nested Loops Join 

 Block Nested Loops Join 
 

 Join algorithms which do not enumerate the cross-product: 

 Index Nested Loops Join 

 Sort-Merge Join 

 Hash Join 
 

 
 

 

 

 

 

  

  



34 

 What if there is an index on one of the 
relations on the join attribute(s)? 

 A: Leverage the index by making the 
indexed relation inner  

Index Nested Loops Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 
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 Assuming an index on S: 

 

 

Index Nested Loops Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

for each tuple r of R 
for each tuple s of S where ri == sj 

Add (r, s) to result 



36 

 What will be the cost? 

 Cost: M + m * c    (c: look-up cost) 

Index Nested Loops Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

‘c’ depends on the type of index, the adopted alternative  
and whether the index is clustered or un-clustered! 



The Join Operation 

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not 

 
 Join algorithms which enumerate the cross-product: 

 Simple Nested Loops Join 

 Block Nested Loops Join 
 

 Join algorithms which do not enumerate the cross-product: 

 Index Nested Loops Join 

 Sort-Merge Join 

 Hash Join 
 

 
 

 

 

 

 

  

  



Sort-Merge Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Sort both relations on join attribute(s) 

 Scan each relation and merge 

 This works only for equality join conditions! 



Sort-Merge Join: An Example 

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

? 



Sort-Merge Join: An Example 

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

NO 
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Sort-Merge Join: An Example 
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31 lubber 8 55.5
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28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES 

Output the two tuples 
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Sort-Merge Join: An Example 

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES 

Output the two tuples 

Continue the  
same way! 



Sort-Merge Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 What is the cost? 

 ~ 2*M*logM/logB + 2*N* logN/logB + M + N 

 



Sort-Merge Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Assuming 100 buffer pages, Reserves and 

Sailors can be sorted in 2 passes 

 Total cost = 7500 I/Os 

 Cost of Block Nested Loops Join = 7500 I/Os 

 



Sort-Merge Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Assuming 35 buffer pages, Reserves and 

Sailors can be sorted in 2 passes 

 Total cost = 7500 I/Os 

 Cost of Block Nested Loops Join = 15000 I/Os 

 



Sort-Merge Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Assuming 300 buffer pages, Reserves and 

Sailors can be sorted in 2 passes 

 Total cost = 7500 I/Os 

 Cost of Block Nested Loops Join = 2500 I/Os 

 

It is possible to improve the Sort-Merge Join algorithm by combining the 
merging phase of sorting with the merging phase of the join! 
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