
Database Applications (15-415)

DBMS Internals- Part VII
Lecture 15, March 17, 2014

Mohammad Hammoud

Today…

 Last Session:

 DBMS Internals- Part VI

 Algorithms for Relational Operations

 Today’s Session:

 DBMS Internals- Part VII

 Algorithms for Relational Operations (Cont’d)

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Relational Operations
 We will consider how to implement:

 Selection ()

 Projection ()

 Join ()

 Set-difference ()

 Union ()

 Aggregation (SUM, MIN, etc.) and GROUP BY

 Since each operation returns a relation, ops can be composed!

 After we cover how to implement operations, we will discuss
how to optimize queries (formed by composing operators)

Assumptions
 We assume the following two relations:

 For Reserves, we assume:
 Each tuple is 40 bytes long, 100 tuples per page, 1000 pages

 For Sailors, we assume:
 Each tuple is 50 bytes long, 80 tuples per page, 500 pages

 Our cost metric is the number of I/Os

 We ignore the computational and output costs

Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

Outline

Introduction

The Selection Operation

The Projection Operation

The Join Operation

Last
Class

The Join Operation
 Consider the following query, Q, which implies a join:

 How can we evaluate Q?
 Compute R × S
 Select (and project) as required

 But, the result of a cross-product is typically much larger
than the result of a join

 Hence, it is very important to implement joins without
materializing the underlying cross-product

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join

Assumptions

 We assume equality joins with:
 R represents Reserves and S represents Sailors

 M pages in R, pR tuples per page, m tuples total

 N pages in S, pS tuples per page, n tuples total

 We will consider more complex join conditions later

 Our cost metric is the number of I/Os

 We ignore output and computational costs

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

for each tuple r of R
for each tuple s of S

print, if they match

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

for each tuple r of R
for each tuple s of S

print, if they match

Outer Relation

Inner Relation

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

How many disk accesses (‘M’ and ‘N’ are the
numbers of pages for ‘R’ and ‘S’)?

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

How many disk accesses (‘M’ and ‘N’ are the
numbers of pages for ‘R’ and ‘S’)?

I/O Cost = M+m*N

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

- Cost = (pR * M) * N + M = 100*1000*500+1000 I/Os
- At 10ms/IO, total = ~6days (!)

I/O Cost = M+m*N

Can we do better?

Nested Loops Join: A Simple Refinement

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Algorithm:

 Read in a page of R

 Read in a page of S

 Print matching tuples COST= ?

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Algorithm:

 Read in a page of R

 Read in a page of S

 Print matching tuples COST= M+M*N

Nested Loops Join: A Simple Refinement

Nested Loops Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Which relation should be the outer?

COST= M+M*N

Nested Loops Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Which relation should be the outer?

 A: The smaller (page-wise)

COST= M+M*N

Nested Loops Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 M=1000, N=500 - if larger is the outer:

 Cost = 1000 + 1000*500 = 501,000

 = 5010 sec ~ 1.4h
COST= M+M*N

Nested Loops Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 M=1000, N=500 - if smaller is the outer:

 Cost = 500 + 1000*500 = 500,500

 = 5005 sec ~ 1.4h
COST= N+M*N

Simple Nested Loops Join

 What if we do not apply the page-oriented
refinement?
 Cost = (pR * M) * N + M = 100*1000*500+1000 I/Os
 At 10ms/IO, total = ~6days (!)

 What if we apply the page-oriented refinement?
 Cost = M * N + M = 1000*500+1000 I/Os
 At 10ms/IO, total = 1.4 hours (!)

 What if the smaller relation is the outer?
 Slightly better

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join

Block Nested Loops

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 What if we have B buffer pages available?

Block Nested Loops

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 What if we have B buffer pages available?

 A: give B-2 buffer pages to outer, 1 to inner,

1 for output

Block Nested Loops

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Algorithm:

 Read in B-2 pages of R

 Read in a page of S

 Print matching tuples
COST= ?

Block Nested Loops

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Algorithm:

 Read in B-2 pages of R

 Read in a page of S

 Print matching tuples
COST= M+M/(B-2)*N

Block Nested Loops

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

• And, actually:

• Cost = M + ceiling(M/(B-2)) * N

COST= M+M/(B-2)*N

Block Nested Loops

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

• If the smallest (outer) relation fits in memory?

• That is, B= N+2

• Cost =?

Block Nested Loops

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

• If the smallest (outer) relation fits in memory?

• That is, B= N+2

• Cost =N+M (minimum!)

Nested Loops - Guidelines

 Pick as outer the smallest table
(= fewest pages)

 Fit as much of it in memory as possible

 Loop over the inner

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join

34

 What if there is an index on one of the
relations on the join attribute(s)?

 A: Leverage the index by making the
indexed relation inner

Index Nested Loops Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

35

 Assuming an index on S:

Index Nested Loops Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

for each tuple r of R
for each tuple s of S where ri == sj

Add (r, s) to result

36

 What will be the cost?

 Cost: M + m * c (c: look-up cost)

Index Nested Loops Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

‘c’ depends on the type of index, the adopted alternative
and whether the index is clustered or un-clustered!

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join

Sort-Merge Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Sort both relations on join attribute(s)

 Scan each relation and merge

 This works only for equality join conditions!

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

NO

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Output the two tuples

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Output the two tuples

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

NO

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Output the two tuples

Continue the
same way!

Sort-Merge Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 What is the cost?

 ~ 2*M*logM/logB + 2*N* logN/logB + M + N

Sort-Merge Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Assuming 100 buffer pages, Reserves and

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block Nested Loops Join = 7500 I/Os

Sort-Merge Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Assuming 35 buffer pages, Reserves and

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block Nested Loops Join = 15000 I/Os

Sort-Merge Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Assuming 300 buffer pages, Reserves and

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block Nested Loops Join = 2500 I/Os

It is possible to improve the Sort-Merge Join algorithm by combining the
merging phase of sorting with the merging phase of the join!

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

