Database Applications (15-415)

Relational Algebra Lecture 4, January 22, 2014

Mohammad Hammoud

Today...

- Last Session:
- The relational model
- Today's Session:
- Relational algebra
- Relational query languages (in general)
- Relational operators
- Additional examples
- Announcements:
- PS1 is due tomorrow by midnight
- In the next recitation we will practice on translating ER designs into relational databases as well as practice on relational algebra

Outline

Query Languages

Relational Operators

Examples on Relational Algebra

Relational Query Languages

- Query languages (QLs) allow manipulating and retrieving data from databases
- The relational model supports simple and powerful QLs:
- Strong formal foundation based on logic
- High amenability for effective optimizations
- Query Languages != programming languages!
- QLs are not expected to be "Turing complete"
- QLs are not intended to be used for complex calculations
- QLs support easy and efficient access to large datasets

Formal Relational Query Languages

- There are two mathematical Query Languages which form the basis for commercial languages (e.g. SQL)
- Relational Algebra
- Queries are composed of operators
- Each query describes a step-by-step procedure for computing the desired answer
- Very useful for representing execution plans
- Relational Calculus
- Queries are subsets of first-order logic
- Queries describe desired answers without specifying how they will be computed
- A type of non-procedural (or declarative) formal query language

Formal Relational Query Languages

- There are two mathematical Query Languages which form the basis for commercial languages (e.g. SQL)

This session's topic

Next session's topic

Outline

Query Languages

Relational Operators

Examples on Relational Algebra

Relational Algebra

- Operators (with notations):

1. Selection (0)
2. Projection (8)
3. Cross-product (X)
4. Set-difference (-)
5. Union (U)
6. Intersection (\cap)
7. Join (ゆ
8. Division (\div)
9. Renaming (ρ)

- Each operation returns a relation, hence, operations can be composed! (i.e., Algebra is "closed")

Relational Algebra

- Operators (with notations):

- Each operation returns a relation, hence, operations can be composed! (i.e., Algebra is "closed")

The Projection Operatation

- Projection: $\pi_{\text {att-list }}(R)$
- "Project out" attributes that are NOT in att-list
- The schema of the output relation contains ONLY the fields in att-list, with the same names that they had in the input relation
- Example 1: π

Input Relation:

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

Output Relation:

sname	rating
yuppy	9
lubber	8
guppy rusty	5

The Projection Operation

- Example 2: $\pi_{\text {age }}(S 2)$

Input Relation:
Output Relation:

$\underline{\text { sid }}$	sname	rating	age	age
28	yuppy	9	35.0	age
31	lubber	8	55.5	35.0
44	guppy	5	35.0	55.5
58	rusty 10 :35.0			

- The projection operator eliminates duplicates!
- Note: real DBMSs typically do not eliminate duplicates unless explicitly asked for

The Selection Operation

- Selection: $\sigma_{\text {condition }}(R)$
- Selects rows that satisfy the selection condition
- The schema of the output relation is identical to the schema of the input relation
- Example: $\quad \sigma_{\text {rating }>8}(S 2)$

Input Relation:

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

28 \& yuppy \& 9 \& 35.0

58 \& $$
\begin{array}{l}\text { yusty } \\
\text { rust }\end{array}
$$ \& 10 \& 35.0

\hline\end{array}\right.\)

Operator Composition

- The output relation can be the input for another relational algebra operation! (Operator composition)

The Union Operation

- Union: R U S
- The two input relations must be union-compatible
- Same number of fields
- `Corresponding' fields have the same type
- The output relation includes all tuples that occur "in either" R or S "or both"
- The schema of the output relation is identical to the schema of R
- Example: $S 1 \cup S 2$

Input Relations:

$\underline{\text { sid }}$	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

Output Relation:

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

The Intersection Operation

- Intersection: $\boldsymbol{R} \cap \boldsymbol{S}$
- The two input relations must be union-compatible
- The output relation includes all tuples that occur "in both" R and S
- The schema of the output relation is identical to the schema of R
- Example: $S 1 \cap S 2$

Input Relations:

$\underline{\text { sid }}$	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

$\underline{\text { sid }}$	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

Output Relation:

\downarrow| sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

The Set-Difference Operation

- Set-Difference: \boldsymbol{R} - \boldsymbol{S}
- The two input relations must be union-compatible
- The output relation includes all tuples that occur in R "but not" in S
- The schema of the output relation is identical to the schema of R
- Example: $S 1-S 2$

Input Relations:

$\underline{\text { sid }}$	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

$\underline{\text { sid }}$	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

Output Relation:

The Cross-Product and Renaming Operations

- Cross Product: $\boldsymbol{R X S}$
- Each row of R is paired with each row of S
- The schema of the output relation concatenates S1's and R1's schemas
- Conflict: R and S might have the same field name
- Solution: Rename fields using the "Renaming Operator"
- Renaming: $\rho(R(\bar{F}), E)$
- Example: $S 1 X R 1$

	Input		
sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Output Relation:

$\frac{\text { sid }}{}$	bid	$\underline{\text { day }}$	
22	101	$10 / 10 / 96$	
58	103	$11 / 12 / 96$	
R1			

(${ }^{--\mathrm{sid})}$	sname	rating	age	(P (sid)	bid	day
,22	dustin	7	45.0-	-22	101	10/10/96
\% 22	dustin	7	45.0	58	103	11/12/96
31	lubber		55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
	- ${ }^{\text {ústy }}$	10	35.0	22	101	10/10/96
- -58	rusty	10	35.0	58	103	11/12/96

Conflict: Both S1 and R1 have a field called sid

The Cross-Product and Renaming Operations

- Cross Product: $\boldsymbol{R X S}$
- Each row of R is paired with each row of S
- The schema of the output relation concatenates S1's and R1's schemas
- Conflict: R and S might have the same field name
- Solution: Rename fields using the "Renaming Operator"
- Renaming: $\rho(R(\bar{F}), E)$
- Example: $S 1 X R 1$

		Inpu	
sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Output Relation:

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	$10 / 10 / 96$
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	22	101	$10 / 10 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
58	rusty	10	35.0	22	101	$10 / 10 / 96$
58	rusty	10	35.0	58	103	$11 / 12 / 96$

$$
\rho(C(1 \rightarrow \operatorname{sid} 1,5 \rightarrow \operatorname{sid} 2), S 1 \times R 1)
$$

The Join Operation

- (Theta) Join : $R \bowtie{ }_{c} S=\sigma_{c}(R \times S)$
- The schema of the output relation is the same as that of cross-product
- It usually includes fewer tuples than cross-product
- Example: $\quad S 1 \bowtie_{S 1 . s i d<R 1 . s i d} R 1$

Will be redundant "if" the condition is S1.sid = R1.sid!

The Join Operation

- Equi-Join: $R \bowtie{ }_{c} S=\sigma_{c}(R \times S)$
- A special case of theta join where the condition c contains only equalities
- The schema of the output relation is the same as that of cross-product, "but only one copy of the fields for which equality is specified"
- Natural Join: $R \bowtie S$
- Equijoin on "all" common fields
- Example: $S 1 \bowtie$ $S 1$. sid $=R 1$. sid $R 1$

Input Relations:
Output Relation:

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

$\underline{\text { sid }}$	$\underline{\text { bid }}$	$\underline{\text { day }}$
22	101	$10 / 10 / 96$
58	103	$11 / 12 / 96$

S1
R1

The Join Operation

- Equi-Join: $R \bowtie{ }_{c} S=\sigma_{c}(R \times S)$
- A special case of theta join where the condition c contains only equalities
- The schema of the output relation is the same as that of cross-product, "but only one copy of the fields for which equality is specified"
- Natural Join: $R \bowtie S$
- Equijoin on "all" common fields
- Example: S $1 \bowtie R 1 \ll$ Natural Join

Input Relations:

$\underline{\text { sid }}$	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

$\underline{\text { sid }}$	$\underline{\text { bid }}$	$\underline{\text { day }}$
22	101	$10 / 10 / 96$
58	103	$11 / 12 / 96$

R1

Output Relation:

2. | sid | sname | rating | age | bid | day |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 22 | dustin | 7 | 45.0 | 101 | $10 / 10 / 96$ |
| 58 | rusty | 10 | 35.0 | 103 | $11 / 12 / 96$ |

In this case, same as equi-join!

The Division Operation

- Division: $R \div S$
- Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved all boats

- Let A have 2 fields, x and y; B have only field y :
- A / B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an $x y$ tuple in A
- Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, then x value is in A / B
- Formally: $\mathrm{A} / \mathrm{B}=\{\langle x\rangle \mid \exists\langle x, y\rangle \in A \quad \forall\langle y\rangle \in B\}$
- In general, x and y can be any lists of fields; y is the list of fields in B, and x y is the list of fields in A

Examples of Divisions

sno	pno	
s1	p1	pno
p2		
s1	p2	B1
s1	p3	
s1	p4	
s2	p1	pno
p2	p2	
s3	p2	
s4	p2	B2
s4	p4	
A		

pno	sno p1 p2 p4
$B 3$	s2 s3 s4

sno
s1
$A / B 3$

A/B2

Expressing A/B Using Basic Operators

- Division can be derived from the fundamental operators
- Idea: For A / B, compute all x values that are not `disqualified' by some y value in B
- x value is disqualified if by attaching y value from B, we obtain an xy tuple that is "not" in A

$$
\text { Disqualified } x \text { values: } \quad \pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)
$$

$A / B: \quad \pi_{x}(A)-$ all disqualified tuples

Relational Algebra: Summary

- Operators (with notations):

1. Selection (o): selects a subset of rows from a relation
2. Projection (): deletes unwanted columns from a relation
3. Cross-product (X): allows combining two relations
4. Set-difference (-): retains tuples which are in relation 1, "but not" in relation 2
5. Union (U): retains tuples which are in "either" relation 1 or relation 2, "or in both"

Relational Algebra: Summary

- Operators (with notations):

6. Intersection (\cap): retains tuples which are in relation 1 "and" in relation 2
7. Join (\bowtie): allows combining two relations according to a specific condition (e.g., theta, equi and natural joins)
8. Division (\div): generates the largest instance Q such that $Q \times B$ $\subseteq A$ when computing A / B
9. Renaming (ρ) : returns an instance of a new relation with some fields being potentially "renamed"

Outline

Query Languages

Relational Operators

Examples on Relational Algebra

Additional Examples

- Q1: Find names of sailors who've reserved boat \#103

$$
\left.\begin{array}{l}
\pi_{\text {sname }}\left(\left(\sigma_{\text {bid }=103} \text { Reserves }\right) \bowtie \text { Sailors }\right) \\
\pi_{\text {sname }}\left(\sigma_{\text {or }}^{\text {bid }=103}\right. \\
\quad \text { Reserves } \bowtie \text { Sailors })
\end{array}\right)
$$

Which one to choose?

Additional Examples

- Q2: Find names of sailors who've reserved a red boat $\pi_{\text {sname }}\left(\left(\sigma_{\text {color }=^{\prime} \text { red }}{ }^{\prime}\right.\right.$ Boats $) \bowtie$ Reserves \bowtie Sailors $)$

OR
$\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\pi_{\text {bid }} \sigma_{\text {color }=\text { 'red }}{ }^{\text {Boats })}\right.\right.\right.$) $\left.\operatorname{Res}\right) \bowtie$ Sailors $)$

A query optimizer can find the second one, given the first solution!

Additional Examples

- Q3: Find sailors who've reserved a red or a green boat
$\rho\left(\right.$ Tempboats, $\left(\sigma_{\text {color }}=\right.$ ' red' \vee color $=$ ' green' ${ }^{\prime}$ Boats $\left.)\right)$
$\pi_{\text {sname }}{ }^{(\text {Tempboats } \bowtie \operatorname{Reserves} \bowtie} \bowtie$ Sailors)

Can we define Tempboats using union?

What happens if \vee is replaced by \wedge ?

Additional Examples

- Q4: Find sailors who've reserved a red and a green boat
$\rho\left(\right.$ Tempred,$\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ 'red ${ }^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\rho\left(\right.$ Tempgreen, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ green' $^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\pi_{\text {sname }}(($ Tempred \cap Tempgreen $) \bowtie$ Sailors $)$

Would the previous approach (i.e., using \cap instead of U) work?

Additional Examples

- Q5: Find the names of sailors who've reserved all boats
ρ (Tempsids, ($\pi_{\text {sid,bid }}$ Reserves $) /\left(\pi_{\text {bid }}\right.$ Boats $\left.)\right)$
$\pi_{\text {sname }}($ Tempsids \bowtie Sailors $)$

How can we find sailors who've reserved all 'Interlake' boats?

Summary

- The relational model has rigorously defined query languages that are simple and powerful
- Relational algebra is operational; useful as internal representation for query evaluation plans
- Several ways of expressing a given query; a query optimizer should choose the most efficient version

Next Class

Relational Calculus

