Database Applications (15-415)

Relational Calculus Lecture 5, January 27, 2014

Mohammad Hammoud

Today...

- Last Session:
- Relational Algebra
- Today's Session:
- Relational algebra
- The division operator and summary
- Relational calculus
- Tuple relational calculus
- Domain relational calculus
- Announcement:
- PS2 will be posted by tonight. It is due on Feb 06, 2014 by midnight

Outline

The Division Operator and Summary of Relational Operators

Tuple Relational Calculus

Domain Relational Calculus

The Division Operation

- Division: $R \div S$
- Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved all boats

- Let A have 2 fields, x and y; B has only field y :
- A / B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an $x y$ tuple in A
- Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, then x value is in A / B
- Formally: $\mathrm{A} / \mathrm{B}=\{\langle x\rangle \mid \exists\langle x, y\rangle \in A \quad \forall\langle y\rangle \in B\}$
- In general, x and y can be any lists of fields; y is the list of fields in B, and x y is the list of fields in A

Examples of Divisions

sno	pno	
s1	p1	pno
p2		
s1	p2	B1
s1	p3	
s1	p4	
s2	p1	pno
p2	p2	
s3	p2	
s4	p2	B2
s4	p4	
A		

pno	sno p1 p2 p4
$B 3$	s2 s3 s4

sno
s1
$A / B 3$

A/B2

Expressing A/B Using Basic Operators

- Division can be derived from the fundamental operators
- Idea: For A / B, compute all x values that are not `disqualified' by some y value in B
- x value is disqualified if by attaching y value from B, we obtain an xy tuple that is "not" in A

$$
\text { Disqualified } x \text { values: } \quad \pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)
$$

$A / B: \quad \pi_{x}(A)-$ all disqualified tuples

A Query Example

- Find the names of sailors who've reserved all boats
ρ (Tempsids, $\left(\pi_{\text {sid,bid }}\right.$ Reserves $) /\left(\pi_{\text {bid }}\right.$ Boats $\left.)\right)$
$\pi_{\text {sname }}($ Tempsids \bowtie Sailors $)$

How can we find sailors who've reserved all 'Interlake' boats?

Relational Algebra: Summary

- Operators (with notations):

1. Selection (o): selects a subset of rows from a relation
2. Projection (): deletes unwanted columns from a relation
3. Cross-product (X): allows combining two relations
4. Set-difference (-): retains tuples which are in relation 1, "but not" in relation 2
5. Union (U) : retains tuples which are in "either" relation 1 "or" relation 2, "or in both"

Relational Algebra: Summary

- Operators (with notations):

6. Intersection (\cap): retains tuples which are in relation 1 "and" in relation 2
7. Join (\bowtie) : allows combining two relations according to a specific condition (e.g., theta, equi and natural joins)
8. Division (\div): generates the largest instance Q such that $Q \times B$ $\subseteq A$ when computing A / B
9. Renaming (ρ) : returns an instance of a new relation with some fields being potentially "renamed"

Outline

The Division Operator and Summary of Relational Operators

Tuple Relational Calculus

Domain Relational Calculus

Overview - Detailed

- Tuple Relational Calculus (TRC)
- Why?
- Details
- Examples
- Equivalence with relational algebra
- 'Safety' of expressions

Motivation

- Question: What is the weakness of relational algebra?
- Answer: Procedural
- It describes the steps for computing the desired answer (i.e., 'how')
- Still useful, especially for query optimization

Relational Calculus (in General)

- It describes 'what' we want (not how)
- It has two equivalent flavors, 'tuple' and 'domain' calculus
- It is the basis for SQL and Query By Example (QBE)
- It is useful for proofs (see query optimization, later)

Tuple Relational Calculus (TRC)

- RTC is a subset of 'first order logic':

Give me tuples ' t ', satisfying predicate ' P '

- Examples:
- Find all students: $\{t \mid t \in S T U D E N T\}$
- Find all sailors with a rating above 7:

$$
\{t \mid t \in \text { Sailors } \wedge t . \text { rating }>7\}
$$

Syntax of TRC Queries

- The allowed symbols:

$$
\begin{aligned}
& \wedge, \quad \vee, \quad \neg, \Rightarrow \\
& >,<, \quad=, \quad \neq, \quad \leq, \quad \geq \\
& (, \quad), \in
\end{aligned}
$$

- Quantifiers:

$$
\forall, \quad \exists
$$

Syntax of TRC Queries

- 'Atomic formulas':

$t \in T A B L E$
t.attr op const
t.attr op s.attr

Where $\boldsymbol{o p}$ is an operator in the set $\{<,>,=, \leq, \geq, \neq\}$

Syntax of TRC Queries

- A 'formula' is:
- Any atomic formula
- If P1 and P2 are formulas, so are

$$
\neg P 1 ; \neg P 2 ; P 1 \wedge P 2 ; P 1 \vee P 2 ; P 1 \Rightarrow P 2
$$

- If $P(s)$ is a formula, so are

$$
\begin{aligned}
& \exists s(P(s)) \\
& \forall s(P(s))
\end{aligned}
$$

Basic Rules

- Reminders:
- De Morgan: $P 1 \wedge P 2 \equiv \neg(\neg P 1 \vee \neg P 2)$
- Implication: $P 1 \Rightarrow P 2 \equiv \neg P 1 \vee P 2$
- Double Negation:
$\forall s \in \operatorname{TABLE}(P(s)) \equiv \neg \exists s \in \operatorname{TABLE} \quad(\neg P(s))$
'every human is mortal : no human is immortal'

A Mini University Database

STUDENT

Ssn	Name	Address
	123 smith	main str
234 jones	QF ave	

CLASS		
c-id	c-name	units
$15-413$	s.e.	2
$15-412$	o.s.	2

TAKES		
SSN	c-id	grade
123	$15-413$	A
234	$15-413$	B

Examples

- Find all student records

output tuple

of type 'STUDENT'

Examples

- Find the student record with ssn=123

Examples

- Find the student record with ssn=123

$$
\{t \mid t \in S T U D E N T \wedge t . s s n=123\}
$$

This is equivalent to the 'Selection' operator in Relational Algebra!

Examples

- Find the name of the student with ssn=123

Will this work?

Examples

- Find the name of the student with ssn=123

$$
\begin{gathered}
\{t \mid \exists s \in S T U D E N T(\text { s.ssn }=123 \wedge \\
t . n a m e=s . n a m e)\} \\
\text { ' } \mathbf{t} \text { ' has only one column }
\end{gathered}
$$

This is equivalent to the 'Projection' operator in Relational Algebra!

Examples

- Get records of part time or full time students*

$$
\begin{array}{r}
\left\{t \mid t \in F T_{-}\right. \text {STUDENT } \\
\left.\quad t \in P T_{-} \text {STUDENT }\right\}
\end{array}
$$

This is equivalent to the 'Union' operator in Relational Algebra!

* Assume we maintain tables for PT_STUDENT and FT_STUDENT in our Mini University DB

Examples

- Find students that are not staff*

$$
\begin{aligned}
\{t \mid t & \in S T U D E N T \wedge \\
t & \notin S T A F F\}
\end{aligned}
$$

This is equivalent to the 'Difference' operator in Relational Algebra!

* Assume we maintain a table for STAFF in our Mini University DB and that STUDENT and STAFF are union-compatible

Cartesian Product: A Reminder

- Assume MALE and FEMALE dog tables as follows:

MALE	\mathbf{X}	FEMALE name		M.name	F.name
name				spike	lassie
spike		lassie		spike	shiba
spot		shiba	=	spot	lassie

This gives all possible couples!

Examples (Cont'd)

- Find all the pairs of (male, female) dogs

$$
\begin{aligned}
& \{t \mid \exists m \in M A L E \wedge \\
& \quad \exists f \in F E M A L E \\
& \quad(t . m-\text { name }=\text { m.name } \wedge \\
& \quad t . f-\text { name }=\text { f.name })\}
\end{aligned}
$$

This is equivalent to the 'Cartesian Product' operator in Relational Algebra!

More Examples

- Find the names of students taking 15-415

STUDENT

Ssn	Name	Address
	123 smith	main str
	234 jones	QF ave

CLASS		
c-id	c-name	units
$15-413$	s.e.	2
$15-412$	o.s.	2

TAKES		
SSN	c-id	grade
12	15-413	A
	15-413	B

More Examples

- Find the names of students taking 15-415

$$
\begin{aligned}
& \{t \mid \exists s \in S T U D E N T \\
& \quad \wedge \exists e \in T A K E S(\text { s.ssn }=e . s s n \wedge \\
& \quad \quad \text { t.name }=\text { s.name } \wedge \\
& \quad e . c-i d=15-415)\}
\end{aligned}
$$

More Examples

- Find the names of students taking 15-415

$$
\{t \mid \exists s \in S T U D E N T
$$

$$
\wedge \exists e \in \text { TAKES }(\text { s.ssn }=e . s s n \wedge \text { join }
$$

$$
\text { t.name }=\text { s.name } \wedge
$$

projection

$$
e . c-i d=15-415)\}
$$

selection

More Examples

- Find the names of students taking a 2-unit course

More Examples

- Find the names of students taking a 2-unit course

$$
\begin{aligned}
& \{t \mid \exists s \in S T U D E N T \wedge \exists e \in T A K E S \\
& \exists c \in C L A S S(s . s s n=e . s s n \wedge \\
& \text { join } \\
& e . c-i d=c . c-i d \wedge \\
& \text { t.name }=\text { s.name } \wedge \\
& \text { c.units }=2 \text {) }\} \\
& \text { selection }
\end{aligned}
$$

What is the equivalence of this in Relational Algebra?

More on Joins

- Assume a Parent-Children (PC) table instance as follows:

PC		PC	
p-id	c-id	p-id	c-id
Mary	Tom	Mary	Tom
Peter	Mary	Peter	Mary
John	Tom	John	Tom

- Who are Tom's grandparent(s)? (this is a self-join)

More Join Examples

- Find Tom's grandparent(s)

$$
\begin{gathered}
\{t \mid \exists p \in P C \wedge \exists q \in P C \\
(p \cdot c-i d=q \cdot p-i d \wedge \\
p \cdot p-i d=t \cdot p-i d \wedge \\
q \cdot c-i d==\text { Tom" })\}
\end{gathered}
$$

Harder Examples: DIVISION

- Find suppliers that shipped all the bad parts

SHIPMENT	
$\mathrm{s} \#$	$\mathrm{p} \#$
s 1	p 1
s 2	p 1
s 1	p 2
s 3	p 1
s 5	p 3

$\div \frac{\text { BAD_P }}{\frac{p \#}{p 1}}=\frac{\text { BAD_S }}{\text { p2 }}=\frac{s}{s 1}$

Harder Examples: DIVISION

- Find suppliers that shipped all the bad parts

$$
\begin{aligned}
& \left\{t \mid \forall p\left(p \in B A D_{-} P \Rightarrow(\right.\right. \\
& \exists s \in \operatorname{SHIPMENT}(\\
& t . s \#=s . s \# \wedge \\
& s . p \#=p . p \#)))\}
\end{aligned}
$$

General Patterns

- There are three equivalent versions:

1) If it is bad, he shipped it

$$
\left\{t \mid \forall p\left(p \in B A D_{-} P \Rightarrow(P(t))\right\}\right.
$$

2) Either it was good, or he shipped it

$$
\left\{t \mid \forall p\left(p \notin B A D_{-} P \vee(P(t))\right\}\right.
$$

3) There is no bad shipment that he missed

$$
\left\{t \mid \neg \exists p\left(p \in B A D_{-} P \wedge(\neg P(t))\right\}\right.
$$

More on Division

- Find (SSNs of) students that take all the courses that $s s n=123$ does (and maybe even more)

One way to think about this:
Find students ' s ' so that if 123 takes a course $=>$ so does ' s '

More on Division

- Find (SSNs of) students that take all the courses that $s s n=123$ does (and maybe even more)

$$
\begin{gathered}
\{o \mid \forall t((t \in T A K E S \wedge t . s s n=123) \Rightarrow \\
\exists t 1 \in T A K E S(\\
t 1 . c-i d=t . c-i d \wedge \\
t 1 . s s n=o . s s n) \\
)\}
\end{gathered}
$$

'Proof' of Equivalence

- Relational Algebra <-> TRC

But...

Safety of Expressions

- What about?

It has infinite output!!

- Instead, always use:

$$
\{t \mid \ldots t \in S O M E-T A B L E\}
$$

Outline

The Division Operator and Summary of Relational Operators

Tuple Relational Calculus

Domain Relational Calculus

Overview - Detailed

- Domain Relational Calculus (DRC)
- Why?
- Details
- Examples
- Equivalence with TRC and relational algebra
- 'Safety' of expressions

Domain Relational Calculus (DRC)

- Question: why?
- Answer: slightly easier than TRC, although equivalent- basis for QBE
- Idea: "domain" variables instead of "tuple" variables
- Example: 'find STUDENT record with ssn=123'

$$
\{<s, n, a>\ll s, n, a>\in S T U D E N T \wedge s=123\}
$$

Syntax of DRC Queries

- The allowed symbols are:

$$
\begin{aligned}
& \wedge, \vee, \neg, \Rightarrow \\
& >,<,=, \neq, \quad \geq, \quad \geq \\
& (, \quad), \in
\end{aligned}
$$

- Quantifiers:

$$
\forall, \quad \exists
$$

Syntax of DRC Queries

- But: domain (= column) variables, as opposed to tuple variables:

$$
\begin{aligned}
& <s, n, a>\in S T U D E N T \\
& \text { name address }
\end{aligned}
$$

ssn

Reminder: Our Mini University DB

STUDENT

Ssn	Name	Address
	123 smith	main str
234 jones	QF ave	

CLASS	
l-id	c-name
$15-413$	s.e.
$15-412$	o.s.

TAKES		
SSN	c-id	grade
123	$15-413$	A
234	$15-413$	B

Examples

- Find all student records

$$
\{<s, n, a>\ll s, n, a>\in S T U D E N T\}
$$

- What is the equivalence of this in TRC?

$$
\{t \mid t \in S T U D E N T\}
$$

Examples

- Find the student record with ssn=123

$$
\begin{gathered}
\{<s, n, a>\mid<s, n, a>\in S T U D E N T \wedge s=123\} \\
\text { OR: } \\
\{<123, n, a>\mid<123, n, a>\in S T U D E N T\}
\end{gathered}
$$

In TRC: $\quad\{t \mid t \in S T U D E N T \wedge t \cdot s s n=123\}$

This is equivalent to the 'Selection' operator in Relational Algebra!

Examples

- Find the name of student with ssn=123

$$
\{<n>\mid \quad<123, n, a>\in S T U D E N T\}
$$

> In TRC: $\quad\{t \mid \exists s \in S T U D E N T($ s.ssn $=123 \wedge$ t.name $=$ s.name $)\}$

Examples

- Find the name of student with $s s n=123$

$$
\begin{aligned}
& \{<n>\mid \exists a(<123, n, a>\in S T U D E N T)\} \\
& \uparrow \text { need to 'bind' "a" }
\end{aligned}
$$

$$
\begin{gathered}
\text { In TRC: } \quad\{t \mid \exists s \in S T U D E N T(\text { s.ssn }=123 \wedge \\
\text { t.name }=\text { s.name })\}
\end{gathered}
$$

This is equivalent to the 'Projection' operator in Relational Algebra!

Examples

- Get records of both PT and FT students

$$
\begin{gathered}
\left\{<s, n, a>\mid<s, n, a>\in F T _S T U D E N T \vee\right. \\
\left.\quad<s, n, a>\in P T_{-} S T U D E N T\right\} \\
\text { In TRC: } \quad\left\{t \mid t \in F T_{-} S T U D E N T \vee\right. \\
\left.\quad t \in P T_{-} S T U D E N T\right\}
\end{gathered}
$$

This is equivalent to the 'Union' operator in Relational Algebra!

Examples

- Find the students that are not staff

$$
\begin{aligned}
& \{<s, n, a><s, n, a>\in S T U D E N T \wedge \\
& \quad<s, n, a>\notin S T A F F\}
\end{aligned}
$$

In TRC: $\quad\{t \mid t \in S T U D E N T \wedge$

$$
t \notin S T A F F\}
$$

This is equivalent to the 'Difference' operator in Relational Algebra!

Examples

- Find all the pairs of (male, female)

$$
\begin{gathered}
\{<m, f>\mid<m>\in M A L E \wedge \\
\quad<f>\in F E M A L E\}
\end{gathered}
$$

In TRC: $\{t \mid \exists m \in M A L E \wedge$

$$
\exists f \in F E M A L E
$$

$$
(\text { t.m }- \text { name }=\text { m.name } \wedge
$$

$$
\text { t.f }- \text { name }=\text { f.name })\}
$$

Examples

- Find the names of students taking 15-415

CLASS		
c-id	c-name	units
$15-413$	s.e.	2
$15-412$	o.s.	2

2-way Join!
TAKES

SSN	c-id	grade
123	$15-413$	A
234	$15-413$	B

Examples

- Find the names of students taking 15-415

$$
\begin{aligned}
\{<n & >\mid \exists s \exists a \exists g(<s, n, a>\in S T U D E N T \\
& \wedge<s, 15-415, g>\in T A K E S)\}
\end{aligned}
$$

In TRC: $\{t \mid \exists s \in S T U D E N T$

$$
\wedge \exists e \in T A K E S(\operatorname{s.ssn}=e . s s n \wedge
$$

$$
\text { t.name }=\text { s.name } \wedge
$$

$$
e . c-i d=15-415)\}
$$

This is equivalent to the 'Join' operator in Relational Algebra!

A Sneak Preview of QBE

- Very user friendly
- Heavily based on RDC
- Very similar to MS Access interface

$$
\begin{aligned}
\{<n & >\mid \exists s \exists a \exists g(<s, n, a>\in S T U D E N T \\
& \wedge<s, 15-415, g>\in T A K E S)\}
\end{aligned}
$$

STUDENT

Ssn	Name	Address
\mathbf{X}	P.	

TAKES		
SSN	c-id	grade
x	$15-415$	

More Examples

- Find the names of students taking a 2-unit course

More Examples

- Find the names of students taking a 2-unit course

$$
\left.\begin{gathered}
\text { In TRC: } \\
\{t \mid \exists s \in S T U D E N T \wedge \exists e \in T A K E S \\
\exists c \in C L A S S(s . s s n=e . s s n \wedge \\
e . c-i d=c . c-i d \wedge \\
\text { t.name }=\text { s.name } \wedge \\
\text { c.units }=2)\}
\end{gathered} \right\rvert\, \text { join } \begin{aligned}
& \text { projection }
\end{aligned}
$$

More Examples

- Find the names of students taking a 2-unit course

In DRC:

$$
\begin{aligned}
&\{<n>\mid \ldots \ldots \ldots . . \\
&<s, n, a>\in S T U D E N T \wedge \\
&<s, c, g>\in T A K E S \wedge \\
&<c, c n, 2>\in C L A S S\}
\end{aligned}
$$

More Examples

- Find the names of students taking a 2-unit course

In DRC:

$$
\begin{aligned}
\{<n & >\mid \exists s, a, c, g, c n(\\
& <s, n, a>\in S T U D E N T \wedge \\
& <s, c, g>\in T A K E S \wedge \\
& <c, c n, 2>\in C L A S S
\end{aligned}
$$

)\}

Even More Examples

- Find Tom's grandparent(s)

PC	
p-id	c-id
Mary	Tom
Peter	Mary
John	Tom

In TRC:

$\{t \mid \exists p \in P C \wedge \exists q \in P C$

$$
(p \cdot c-i d=q \cdot p-i d \wedge
$$

PC	
p-id	c-id
Mary	Tom
Peter	Mary
John	Tom

In DRC:

$$
p \cdot p-i d=t \cdot p-i d \wedge
$$

$$
\begin{gathered}
\{<g>\mid \exists p(<g, p>\in P C \wedge \\
\left.\left.<p, " T o m^{\prime \prime}>\in P C\right)\right\}
\end{gathered}
$$

$$
q . c-i d=" T o m ")\}
$$

Harder Examples: DIVISION

- Find suppliers that shipped all the bad parts

SHIPMENT	
$\mathrm{s} \#$	$\mathrm{p} \#$
s 1	p 1
s 2	p 1
s 1	p 2
s 3	p 1
s 5	p 3

$\div \frac{\text { BAD_P }}{\frac{p \#}{p 1}}=\frac{\text { BAD_S }}{\text { p2 }}=\frac{s}{s 1}$

Harder Examples: DIVISION

- Find suppliers that shipped all the bad parts

$$
\begin{aligned}
& \quad \text { In TRC: } \\
& \left\{t \mid \forall p\left(p \in B A D_{-} P \Rightarrow(\right.\right. \\
& \exists s \in S H I P M E N T(\\
& t . s \#=s . s \# \wedge \\
& \text { s.p\#=p.p\#))})\}
\end{aligned}
$$

In DRC:

$$
\begin{aligned}
& \{<s\rangle \mid \forall p\left(<p>\in B A D_{-} P \Rightarrow\right. \\
& <s, p>\in \operatorname{SHIPMENT})\}
\end{aligned}
$$

More on Division

- Find (SSNs of) students that take all the courses that $s s n=123$ does (and maybe even more)

$$
\begin{gathered}
\text { In TRC: } \\
\{o \mid \forall t((t \in T A K E S \wedge t . s s n=123) \Rightarrow \\
\exists t 1 \in T A K E S(\\
t 1 . c-i d=t . c-i d \wedge \\
t 1 . s s n=o . s s n) \\
)\}
\end{gathered}
$$

More on Division

- Find (SSNs of) students that take all the courses that $s s n=123$ does (and maybe even more)

In DRC:

$$
\begin{gathered}
\{<s>\mid \forall c(\exists g(<123, c, g>\in T A K E S) \Rightarrow \\
\left.\left.\left.\exists g^{\prime}\left(<s, c, g^{\prime}>\right) \in T A K E S\right)\right)\right\}
\end{gathered}
$$

'Proof' of Equivalence

- Relational Algebra <-> Domain Relational Calculus <-> Tuple Relational Calculus

But...

Safety of Expressions

- Similar to TRC
- FORBIDDEN:

$$
\{<s, n, a>\mid<s, n, a>\notin S T U D E N T\}
$$

Summary

- The relational model has rigorously defined query languages - simple and powerful
- Relational algebra is more operational/procedural
- Useful for internal representation of query evaluation plans
- Relational calculus is declarative
- Users define queries in terms of what they want, not in terms of how to compute them

Summary

- Several ways of expressing a given query
- A query optimizer should choose the most efficient version
- Algebra and "safe" calculus have same expressive power
- leads to the notion of relational completeness

Next Class

SQL- Part I

