
Database Applications (15-415)

DBMS Internals- Part IV
Lecture 14, March 10, 2015

Mohammad Hammoud

Today…
 Last Two Sessions:

 DBMS Internals- Part III
 Tree-based indexes: ISAM and B+ trees

 Data Warehousing/ Data Mining (by Prof. Christos Faloutsos)

 Today’s Session:

 DBMS Internals- Part IV
 Tree-based (B+ tree- cont’d) and Hash-based indexes

 Announcements:

 P1 grades are out

 Midterm grades are out

 Mid-course grades are out

 PS3 will be posted online by tomorrow

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continued…

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

B+ Trees With Duplicates

 Thus far, we only discussed unique indices (no duplicate
keys- i.e., several data entries with the same key value)

 How can we handle duplicate keys?
1. Use overflow pages to keep all entries of a given key value

on a single leaf page (natural for ISAM)

2. Treat duplicates like any other entries

 Several leaf pages will contain entries of a given key value

 How to search/delete?

3. Make the rid value part of the search key

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

The Height of a B+ Tree

 What are the factors that define the height of a B+ tree?
 Number of data entries

 The order of occupancy

 The order of occupancy dictates the fan-out of the tree

 The height of the tree is proportional to logfan-out (# of DEs)

 What is the number of disk I/Os to retrieve a data entry?
 logfan-out (# of DEs)

 How to minimize the height?
 Maximize the fan-out

Towards Maximizing the Fan-Out?

 What does an index entry contain?

 A search key

 A page pointer

 Hence, the size of an index entry depends primarily on the
size of the search key value!

 What if the search key values are very long?

 Not many index entries will fit on a page

 Fan-out will be small

 The height of the tree will be large

Key Compression: A Way to Maximize
the Fan-Out

 How can we reduce the size of search key values?

 Apply key compression, especially that keys are only
used to direct traffic to the appropriate leaves

David Smith Devarakonda

< David Smith >= David Smith && < Devarakonda

Da De

< Da >= Da && < De

More room
for additional
index entries
in the same

page!

Is this fully correct?

Key Compression: A Way to Maximize
the Fan-Out (Cont’d)

 What about the following example?

David Smith Devarakonda

Dante Wu Darius Rex

Danial Lee

Davey Jones

< David Smith

Dav DeDan

> Dav

To ensure correct semantics, the largest key value in the left sub-tree
and the smallest key value in the right sub-tree must be examined!

Dante Wu Darius Rex Davey Jones

< Dav

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

B+ Tree: Bulk Loading

 Assume a collection of data records with an existing B+ tree
index on it

 How to add a new record to it?

 Use the B+ tree insert() function

 What if we have a collection of data records for which we
want to create a B+ tree index? (i.e., we want to bulk load
the B+ tree)

 Starting with an empty tree and using the insert() function
for each data record, one at a time, is expensive!

 This is because for each entry we would require starting again
from the root and going down to the appropriate leaf page

B+ Tree: Bulk Loading

 What to do?

 Initialization: Sort all data entries, insert pointer to first (leaf)
page in a new (root) page

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

B+ Tree: Bulk Loading

 What to do?

 Add one entry to the root page for each subsequent page of
the sorted data entries (i.e., <lowest key value on page,
pointer to the page>)

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

B+ Tree: Bulk Loading

 What to do?

 Add one entry to the root page for each subsequent page of
the sorted data entries (i.e., <lowest key value on page,
pointer to the page>)

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root
6

B+ Tree: Bulk Loading

 What to do?

 Add one entry to the root page for each subsequent page of
the sorted data entries (i.e., <lowest key value on page,
pointer to the page>)

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root
6 10

B+ Tree: Bulk Loading

 What to do?

 Split the root and create a new root page

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root
6 10

B+ Tree: Bulk Loading

 What to do?

 Split the root and create a new root page

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

6 12

10
‘push up’ the middle key

B+ Tree: Bulk Loading

 What to do?

 Continue by inserting entries into the right-most index page
just above the leaf page; split when fills up

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

6 12

10

B+ Tree: Bulk Loading

 What to do?

 Continue by inserting entries into the right-most index page
just above the leaf page; split when fills up

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages

not yet in B+ tree
3523126

10 20

B+ Tree: Bulk Loading

 What to do?

 Continue by inserting entries into the right-most index page
just above the leaf page; split when fills up

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages

B+ Tree: Bulk Loading

 What is the cost of bulk loading?
1. Creating the leaf-level entries

 Scanning the data entries and writing out all the leaf-level
entries (i.e., K*)

 Hence, (R+E) I/Os, where R is the number of pages containing
data entries and E is the number of pages containing K*entries

2. Sorting leaf-level entries
 3E I/Os (when discussing sorting, we will see how)

3. Building the index from the sorted leaf-level entries
 The cost of writing out all index-level pages (will be an exercise

in the recitation)!

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

Hash-Based Indexing

 What indexing technique can we use to support range
searches (e.g., “Find s_name where gpa >= 3.0)?
 Tree-Based Indexing

 What about equality selections (e.g., “Find s_name
where sid = 102”?
 Tree-Based Indexing

 Hash-Based Indexing (cannot support range searches!)

 Hash-based indexing, however, proves to be very useful
in implementing relational operators (e.g., joins)

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

Static Hashing
 A hash structure (or table or file) is a generalization of

the simpler notion of an ordinary array

 In an array, an arbitrary position can be examined in O(1)

 A hash function h is used to map keys into a range of
bucket numbers

h(key) mod N

h
key

Primary bucket pages Overflow pages

2

0

N-1

With Static Hashing,
allocated sequentially
and never de-allocated

With Static Hashing,
allocated (as needed)
when corresponding
buckets become full

Static Hashing
 Data entries can be any of the three alternatives (A (1), A

(2) or A (3)- see previous lecture)

 Data entries can be sorted in buckets to speed up searches

 The hash function h is used to identify the bucket to which
a given key belongs and subsequently insert, delete or
locate a respective data record
 A hash function of the form h(key) = (a * key + b) works well

in practice

 A search ideally requires 1 disk I/O, while an insertion or a
deletion necessitates 2 disk I/Os

Static Hashing: Some Issues

 Similar to ISAM, the number of buckets is fixed!
 Cannot deal with insertions and deletions gracefully

 Long overflow chains can develop easily and degrade
performance!
 Pages can be initially kept only 80% full

 Dynamic hashing techniques can be used to fix
the problem
 Extendible Hashing (EH)

 Liner Hashing (LH)

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

Directory of Pointers

 How else (as opposed to overflow pages) can we add a
data record to a full bucket in a static hash file?

 Reorganize the table (e.g., by doubling the number of
buckets and redistributing the entries across the new
set of buckets)

 But, reading and writing all pages is expensive!

 In contrast, we can use a directory of pointers to buckets

 Buckets number can be doubled by doubling just the
directory and splitting “only” the bucket that overflowed

 The trick lies on how the hash function can be adjusted!

Extendible Hashing

 Extendible Hashing uses a directory of pointers to buckets

 The result of applying a hash
function h is treated as a
binary number and
the last d bits are
interpreted as an
offset into the directory

 d is referred to as the global depth
of the hash file and is kept as part
of the header of the file

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

2

GLOBAL DEPTH

Extendible Hashing: Searching for Entries

 To search for a data entry, apply a hash function h to the
key and take the last d bits of its binary representation to
get the bucket number

 Example: search for 5*

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*5 = 101

2

Extendible Hashing: Inserting Entries

 An entry can be inserted as follows:

 Find the appropriate bucket (as in search)

 Split the bucket if full and redistribute contents
(including the new entry to be inserted) across
the old bucket and its “split image”

 Double the directory if necessary

 Insert the given entry

Extendible Hashing: Inserting Entries

 Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

 Example: insert 13*

13*

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*13 = 1101

2

Extendible Hashing: Inserting Entries

 Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

 Example: insert 20*

13*

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*20 = 10100

FULL, hence, split and redistribute!
2

Extendible Hashing: Inserting Entries

 Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

 Example: insert 20*
13*

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

32* 16*

15* 7* 19*

5*

20 = 10100

20* Bucket A2
(`split image'
of Bucket A)

4* 12*

2

Is this enough?

Extendible Hashing: Inserting Entries

 Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

 Example: insert 20*
13*

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

32* 16*

15* 7* 19*

5*

20* Bucket A2
(`split image'
of Bucket A)

4* 12*

2

Double the directory and
increase the global depth

20 = 10100

Extendible Hashing: Inserting Entries

 Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

 Example: insert 20*

19*

0 00

001

010

011

1 00

101

110

111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

GLOBAL DEPTH

These two bits indicate a data entry that
belongs to one of these two buckets

The third bit distinguishes between these
two buckets!

But, is it necessary always to
double the directory?

Extendible Hashing: Inserting Entries

 Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

 Example: insert 9*

9 = 1001

19*

000

001

010

011

100

101

110

111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

GLOBAL DEPTH

FULL, hence, split!

Extendible Hashing: Inserting Entries

 Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

 Example: insert 9*

19*

000

001

010

011

100

101

110

111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image‘ of A)

32*

1*

16*

10*

15* 7*

4* 20*12*

GLOBAL DEPTH

Bucket B2

(`split image‘ of B)
5* 21*13*

9*

Almost there…

9 = 1001

Extendible Hashing: Inserting Entries

 Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

 Example: insert 9*

19*

000

001

010

011

100

101

110

111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image‘ of A)

32*

1*

16*

10*

15* 7*

4* 20*12*

GLOBAL DEPTH

Bucket A2

(`split image‘ of A)
5* 21*13*

9*

There was no need to
double the directory!

When NOT to double the
directory?

9 = 1001

Extendible Hashing: Inserting Entries

 Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

 Example: insert 9*

19*

000

001

010

011

100

101

110

111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image‘ of A)

32*

1*

16*

10*

15* 7*

4* 20*12*

GLOBAL DEPTH

Bucket A2

(`split image‘ of A)
5* 21*13*

9*

If a bucket whose local depth
equals to the global depth is
split, the directory must be

doubled

3

2

2

3

3

LOCAL DEPTH

3

9 = 1001

Extendible Hashing: Inserting Entries

 Example: insert 9*

9 = 1001

19*

000

001

010

011

100

101

110

111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

GLOBAL DEPTH

FULL, hence, split!
2

2

2

3

3

Repeat…

Because the local depth
(i.e., 2) is less than the

global depth (i.e., 3), NO
need to double the

directory

LOCAL DEPTH

Extendible Hashing: Inserting Entries

 Example: insert 9*

19*

000

001

010

011

100

101

110

111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image‘ of A)

32*

1*

16*

10*

15* 7*

4* 20*12*

GLOBAL DEPTH

Bucket B2

(`split image‘ of B)
5* 21*13*

9*

3

2

2

3

3

LOCAL DEPTH

3

9 = 1001

Repeat…

Extendible Hashing: Inserting Entries

 Example: insert 9*

19*

000

001

010

011

100

101

110

111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image‘ of A)

32*

1*

16*

10*

15* 7*

4* 20*12*

GLOBAL DEPTH

Bucket B2

(`split image‘ of B)
5* 21*13*

9*

3

2

2

3

3

LOCAL DEPTH

3

FINAL STATE!

9 = 1001

Repeat…

Extendible Hashing: Inserting Entries

 Example: insert 20*

Because the local depth
and the global depth are
both 2, we should double

the directory!

20 = 10100

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

FULL, hence, split!
Repeat…

Extendible Hashing: Inserting Entries

 Example: insert 20*

Is this enough?

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

Repeat…

20 = 10100

Extendible Hashing: Inserting Entries

 Example: insert 20*

19*

2

2

2

000

001

010

011

100

101

110

111

3

2

2

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

Repeat…

Is this enough?

Extendible Hashing: Inserting Entries

 Example: insert 20*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

Repeat…

FINAL STATE!

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Hash-based Indexes (Cont’d)
and External Sorting

