Database Applications (15-415)

DBMS Internals- Part VII
Lecture 18, March 29, 2015

Mohammad Hammoud

e dgdgglagy gl =i 2 aly
Carnegie Mellon University Qatar

Today...

= | ast Session:

= DBMS Internals- Part VI
= Algorithms for Relational Operations

= Today’s Session:

= DBMS Internals- Part VII
= Algorithms for Relational Operations (Cont’d)

= Announcements:
= Project 3 is due on Thursday, April 2" by midnight

= Quiz Il will be held on Thursday, April 9" (all concepts

covered after the midterm are included)
A agdselagy dl =i o aly

Carnegie Mellon University Qatar

DBMS Layers

\ Queries /

Query Optimization
and Execution

Transaction

i
I Recovery

Manager

Lock
Manager

P dgdgglagy gl =i 2 aly

Carnegie Mellon University Qatar

Relational Operations

= We will consider how to implement:

Selection (O)

Projection (7T)

Join (P])

Set-difference (—)

Union (U)

Aggregation (SUM, MIN, etc.) and GROUP BY

= Since each operation returns a relation, ops can be composed!

= After we cover how to implement operations, we will discuss
how to optimize queries (formed by composing operators)

,l'—! Q\Mnﬂfﬂg\.\, zﬁ ":“»—‘?—-Jb

Carnegie Mellon University Qatar

Outline

Introduction

The Selection Operation by Last

i Class

The Projection Operation

> The Join Operation \/

Carnegie Mellon University Qatar

The Join Operation

Consider the following query, Q, which implies a join:

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

How can we evaluate Q?
= Compute RxS
= Select (and project) as required

But, the result of a cross-product is typically much larger
than the result of a join

Hence, it is very important to implement joins without
materializing the underlying cross-product

Je ded yeloatn al =i o 4l

Carnegie Mellon University Qatar

The Join Operation

= We will study five join algorithms, two which enumerate
the cross-product and three which do not

= Join algorithms which enumerate the cross-product:
= Simple Nested Loops Join
= Block Nested Loops Join

= Join algorithms which do not enumerate the cross-product:
" [ndex Nested Loops Join
= Sort-Merge Join

= Hash Join
L agdyelagy gle=i ol

Carnegie Mellon University Qatar

Assumptions

We assume the following two relations:

Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

For Reserves, we assume:

= Each tuple is 40 bytes long, 100 tuples per page, 1000 pages

For Sailors, we assume:
= Each tupleis 50 bytes long, 80 tuples per page, 500 pages

Our cost metric is the number of I/Os

ﬁ""‘::‘;'—'q g J9 ﬂ ® J L—— - | “)

Carnegie Mellon University Qatar

Jaldl

Assumptions (Cont’d)

= We assume equality joins with:
" Rrepresenting Reserves and S representing Sailors
= M pages in R, p, tuples per page, m tuples total
= N pagesin S, ps tuples per page, n tuples total

= We ignore the output and computational costs

Carnegie Mellon University Qatar

The Join Operation

= We will study five join algorithms, two which enumerate
the cross-product and three which do not

= Join algorithms which enumerate the cross-product:
=|Simple Nested Loops Join \/
= Block Nested Loops Join

= Join algorithms which do not enumerate the cross-product:
" [ndex Nested Loops Join
= Sort-Merge Join

= Hash Join
L agdyelagy gle=i ol

Carnegie Mellon University Qatar

Simple Nested Loops Join

e Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

A dgdselagn gl =i o ol

Carnegie Mellon University Qatar

Simple Nested Loops Join

e Algorithm #0: (naive) nested loop (SLOW!)

for each tuple r of R
for each tuple s of S
print, if they match

R(A,..)

S(A,)
| ||

e dgdgglagy gl =i 2 aly
Carnegie Mellon University Qatar

Simple Nested Loops Join

e Algorithm #0: (naive) nested loop (SLOW!)

for each tuple r of® -

for each tuple s of@#

Outer Relation

print, if they match

— Inner Relation

R(A,..)

S(A,)

[

klz,_:i3_c; gl_mg_\._u I_-=m_4>_a[_x
Ca e Mellon Un sity Qatar

Simple Nested Loops Join

e Algorithm #0: (naive) nested loop (SLOW!)

How many disk accesses (‘M’ and ‘N’ are the
numbers of pages for ‘R’ and ‘S’)?

R(A,..)

S(A,)

| |

A dgdselagn gl =i o ol

Carnegie Mellon University Qatar

Simple Nested Loops Join

e Algorithm #0: (naive) nested loop (SLOW!)

How many disk accesses (‘M’ and ‘N’ are the
numbers of pages for ‘R’ and ‘S’)?

R(A,.) /O Cost = M+m*N
S(A, ...

| |

,,lz_qy_q gl_mg_\._d [55;?»_5[4
Ca e Mellon Un sity Qatar

Simple Nested Loops Join

e Algorithm #0: (naive) nested loop (SLOW!)

- Cost = M + (pg * M) * N = 1000 + 100*1000*500 1/Os
- At 10ms/I0, total = ~6 days (!)

R(A,..) /O Cost = M+m*N

| Lo

[Can we do better?]

Nested Loops Join: A Simple Refinement

= Algorithm:

Read in a page of R

Read In a page of S
Print matching tuples COST=7

R(A,.)

M pages, S(A,

N pages,

m tuples ‘ | I

n tuples

Nested Loops Join: A Simple Refinement

= Algorithm:

Read in a page of R

Read In a page of S
Print matching tuples COST=M+M*N

R(A,.)

M pages S(A,

N pages,

m tuples ‘ | I

n tuples

Nested Loops Join

= \Which relation should be the outer?

COST=M+M*N
R(A,..)
M pages, S(A,) N oagec
m tuples ‘ I 1 tuples

Nested Loops Join

= \Which relation should be the outer?
= A:The smaller (page-wise)

COST=M+M*N
R(A,..)
M pages, S(A,) N oagec
m tuples ‘ I 1 tuples

Nested Loops Join

= M=1000, N=500 - if larger 1s the outer:
= Cost =1000 + 1000*500 = 501,000
= 5010 sec (~ 1.4h)

COST=M+M*N
R(A,..)
M pages, S(A,) -
. . pages,
m tuples ‘ ‘ I 1 tuples

Nested Loops Join

= M=1000, N=500 - if smaller iIs the outer:
= Cost =500+ 1000*500 = 500,500
= 5005 sec (~ 1.4h)

COST=N+M*N
R(A,..)
M pages, S(A,) -
. . pages,
m tuples ‘ ‘ I 1 tuples

Summary: Simple Nested Loops Join

= What if we do not apply the page-oriented
refinement?

= Cost =M+ (pg * M) * N =1000 + 100*1000*500 I/Os
= At 10ms/I0, total = ~6 days (!)

" What if we apply the page-oriented refinement?
" Cost=M *N+M =1000*500+1000 I/Os
= At 10ms/IO, total = 1.4 hours (!)

= \What if the smaller relation is the outer?
= Slightly better

A dgdyglagy gl =i o aly

Carnegie Mellon University Qatar

The Join Operation

= We will study five join algorithms, two which enumerate
the cross-product and three which do not

= Join algorithms which enumerate the cross-product:
= Simple Nested Loops Join
" | Block Nested Loops Join \/

= Join algorithms which do not enumerate the cross-product:
" [ndex Nested Loops Join
= Sort-Merge Join

= Hash Join
L agdyelagy gle=i ol

Carnegie Mellon University Qatar

Block Nested Loops

= What if we have B buffer pages available?

R(A,.)

M pages. S(A,)

| N pages,
I n tuples

m tuples

Block Nested Loops

= What if we have B buffer pages available?

= A: Give B-2 buffer pages to outer, 1 to inner,
1 for output

R(A,.)

M pages. S(A,)

| N pages,
I n tuples

m tuples

Block Nested Loops

= Algorithm:
Read In B-2 pages of R

Read In a page of S
Print matching tuples
R(A,..)

M pages. S(A,)

COST=7

m tuples ‘

N pages,

n tuples

Block Nested Loops

= Algorithm:
Read In B-2 pages of R

Read In a page of S
Print matching tuples
R(A,..)

COST= M+M/(B-2)*N

M pages. S(A,)

. I N pages,

m tuples ‘
n tuples

Block Nested Loops

« And, actually:
» Cost =M + ceiling(M/(B-2)) * N
COST= M+M/(B-2)*N
R(A,..)

M pages S(A,)

‘ I N pages,

m tuples ‘
n tuples

Block Nested Loops

* |f the smallest (outer) relation fits in memory?
 Thatis, B =N+2

« Cost=?
R(A,.)
M pages, S(A,) -
m tuples ‘ ' I ntuple;

Block Nested Loops

* |f the smallest (outer) relation fits in memory?
 Thatis, B =N+2
e Cost =N+M (minimum!)

R(A,.)

M pages. S(A,)

. I N pages,

m tuples ‘
n tuples

Nested Loops - Guidelines

= Pick as outer the smallest table
(= fewest pages)

" Fit as much of it in memory as possible

" Loop over the inner

The Join Operation

= We will study five join algorithms, two which enumerate
the cross-product and three which do not

= Join algorithms which enumerate the cross-product:
= Simple Nested Loops Join
= Block Nested Loops Join

= Join algorithms which do not enumerate the cross-product:
" |Index Nested Loops Join \/

= Sort-Merge Join

= Hash Join

A dgdyglagy gl =i o aly

Carnegie Mellon University Qatar

Index Nested Loops Join

= \What if there is an index on one of the
relations on the join attribute(s)?

" A: Leverage the index by making the
indexed relation inner

R(A,.)

M pages, S(A ...)

m tuples <| ‘ ‘ I N pages.

n tuples

34

Index Nested Loops Join

= Assuming an index on S:

for each tuple r of R
for each tuple s of S where r; =='s;
Add (r, s) to result

R(A,.)

M pages, S(A ...)

m tuples <| ‘ ‘ I N pages.

n tuples

Index Nested Loops Join

= \What will be the cost?
" Cost: M+m *c

(c: look-up cost)

‘c’ depends on the type of index, the adopted alternative
and whether the index is clustered or un-clustered!

R(A,.)

M pages,

m tuples

S(A,)

<

|

N pages,

n tuples

36

The Join Operation

= We will study five join algorithms, two which enumerate
the cross-product and three which do not

= Join algorithms which enumerate the cross-product:
= Simple Nested Loops Join
= Block Nested Loops Join

= Join algorithms which do not enumerate the cross-product:
" [ndex Nested Loops Join

=|Sort-Merge Join \/

= Hash Join

A dgdyglagy gl =i o aly

Carnegie Mellon University Qatar

Sort-Merge Join

= Sort both relations on join attribute(s)
= Scan each relation and merge
= This works only for equality join conditions!

M pages,

m tuples

R(A,.)

S(A,)

. I N pages,

n tuples

Sort-Merge Join: An Example

= ?
sid [sname |rating |age
22 |dustin | 7 450 f
28 |yuppy | 9 350
31 |lubber | 8 |555
44 |guppy | 5 |35.0
53 |rusty 10 135.0

11/3/96

10/10/96
10/12/96
10/11/96
11/12/96

———————————

———————————

yuppy
dustin

lubber

lubber
dustin

Sort-Merge Join: An Example

= NO
sid [sname |rating |age
22 |dustin | 7 450 f
28 |yuppy | 9 350
31 |lubber | 8 |555
44 |guppy | 5 |35.0
53 |rusty 10 135.0

11/3/96

10/10/96
10/12/96
10/11/96
11/12/96

———————————

———————————

yuppy
dustin

lubber

lubber
dustin

Sort-Merge Join: An Example

=?
sid [sname |rating |age
22 |dustin | 7 450
28 |yuppy | 9 [35.0 ¥
31 [lubber | 8 [55.5
44 |guppy | 5 |35.0
53 |rusty 10 135.0

11/3/96

10/10/96
10/12/96
10/11/96
11/12/96

———————————

———————————

yuppy
dustin

lubber

lubber
dustin

Sort-Merge Join: An Example

=YES [sid bid | day rname
sid [sname [rating |age | 428..1103 [12/419 | guppy
22 |dustin | 7 |45.0 |/ |28 |103)11(1)/5/96 yuppy
58 Tyuppy |9 3.0 |81 | 101 /10/96 | dustin
31 lubber [~8 [555 | |31 (102 /10/12/96 | lubber
44 |guppy | 5> |35.0 31 |101 |10/11/96 | lubber
58 |rusty 10 435.0 58 |¥03 |11/12/96 | dustin

Output the two tuples

Sort-Merge Join: An Example

=?
sid [sname |rating |age
22 |dustin | 7 450
28 |yuppy | 9 [35.0 %
31 [lubber | 8 [55.5
44 |guppy | 5 |35.0
53 |rusty 10 135.0

day

'name

12/4/96

10/10/96
10/12/96
10/11/96
11/12/96

———————————

lubber
lubber
dustin

Sort-Merge Join: An Example

sid [sname |rating |age
22 |dustin | 7 450
28" yippy | 9350
31 |lubber | 8 [55.5
44 |guppy | 5 |35.0
53 |rusty 10 135.0

day

'name

12/4/96

10/10/96
10/12/96
10/11/96
11/12/96

———————————

lubber
lubber
dustin

Sort-Merge Join: An Example

= YES |sid |bid day rname
sid [sname |rating |age 2810312/4/96 ______ quppy_
22 |dustin | 7 |45.0 | 128../103_|11/3/96 | yuppy
o8 yiopy 03504 |31 101 10/10/96 | dustin
31 [lubber 1~8 555 | |31 [102 |10/12/96 | lubber
44 |guppy | 5> [35.0 31 101/|10/11/96 | lubber
58 |rusty 10 35.0 58 103 |11/12/96 | dustin

Output the two tuples

Sort-Merge Join: An Example

=?
sid [sname |rating |age
22 |dustin | 7 450
28 |yuppy | 9 [35.0 i
31 [lubber | 8 [55.5
44 |guppy | 5 |35.0
53 |rusty 10 135.0

day

'name

12/4/96
11/3/96

10/12/96
10/11/96
11/12/96

quppy

———————————

———————————

lubber
lubber
dustin

Sort-Merge Join: An Example

=NO
sid [sname |rating |age
22 |dustin | 7 450
28 |yuppy | 9 [35.0 i
31 [lubber | 8 [55.5
44 |guppy | 5 |35.0
53 |rusty 10 135.0

day

'name

12/4/96
11/3/96

10/12/96
10/11/96
11/12/96

quppy

———————————

———————————

lubber
lubber
dustin

Sort-Merge Join: An Example

=?
sid [sname |rating |age
22 |dustin | 7 450
28 yuppy | 9 350
3L |lubber | 8 855 f
44 |guppy | 5 |35.0
53 |rusty 10 135.0

day

'name

12/4/96
11/3/96

10/12/96
10/11/96
11/12/96

quppy

———————————

———————————

lubber
lubber
dustin

Sort-Merge Join: An Example

= YES |sid |bid day rname
sid |sname |rating |age 28 103 [12/4/96 | guppy
22 |dustin | 7 |45.0 | |28_|103 |11/3/86 | yuppy
28 |yuppy | 9 1350 | 31101 J10/10/96 | dustin
31 Tubber |8 555 # |31 |102 41/(/12/96 Jubber
44 lguppy 5 | 350 | |31 101 +10/11/96 | lubber
b8 |rusty 10~_(35.0 58 |1 11/12/96 | dustin

Output the two tuples

Continue the
same way!

Sort-Merge Join

= \What Is the cost?
= ~2*M*logM/logB + 2*N* logN/logB + M + N

R(A,.)

M pages. S(A,)

| N pages,
I n tuples

m tuples

Sort-Merge Join

= Assuming 100 buffer pages, Reserves and
Sailors can be sorted In 2 passes

= Total cost = 7500 I/Os
= Cost of Block Nested Loops Join = 7500 1/Os

R(A,.)

M pages. S(A,)

. . N pages,
m tuples ‘ I

n tuples

Sort-Merge Join

= Assuming 35 buffer pages, Reserves and
Sailors can be sorted In 2 passes

= Total cost = 7500 I/Os
= Cost of Block Nested Loops Join = 15000 1/Os

R(A,.)

M pages. S(A,)

. . N pages,
m tuples ‘ I

n tuples

Sort-Merge Join

= Assuming 300 buffer pages, Reserves and
Sailors can be sorted In 2 passes

= Total cost = 7500 I/Os
= Cost of Block Nested Loops Join = 2500 1/Os

R(A,.)

M pages. S(A,)

. . N pages,
m tuples ‘ I

n tuples

[The Block Nested Loops Join is more sensitive to the buffer size!]

The Join Operation

= We will study five join algorithms, two which enumerate
the cross-product and three which do not

= Join algorithms which enumerate the cross-product:
= Simple Nested Loops Join
= Block Nested Loops Join

= Join algorithms which do not enumerate the cross-product:
" [ndex Nested Loops Join

= Sort-Merge Join
= |Hash Join \/

A dgdyglagy gl =i o aly

Carnegie Mellon University Qatar

Hash Join

" The join algorithm based on hashing has two phases:
= Partitioning (also called Building) Phase
= Probing (also called Matching) Phase

= |dea: Hash both relations on the join attribute into k
partitions, using the same hash function h

= Premise: R tuples in partition i can join only with S
tuples in the same partition i

Hash Join: Partitioning Phase

» Partition both relations using hash function h

Two tuples that belong to different partitions are
guaranteed not to match

Original
Relation OUTPUT Partitions
S 1 — >
(1
INPUT 2
hash 2
> function 000
e o o h B-1 000
b B-1
— —

Disk B main memory buffers Disk

Hash Join: Probing Phase

= Read in a partition of R, hash it using h2 (<> h)

= Scan the corresponding partition of S and search

for matches

Join Result

-

<
<
<

Partitions
of R&S —
—— Hash table for partition
hash Ri (k < B-1 pages)
fn
h2 o 0 0
S
o 0 0 > .
Input buffer Output
for Si buffer
—

B main memory buffers

Y

-

Disk

Hash Join: Cost

= What is the cost of the partitioning phase?

= We need to scan R and S, and write them out once
= Hence, cost is 2(M+N) I/Os

= What is the cost of the probing phase?

= We need to scan each partition once (assuming no partition
overflows) of R and S

= Hence, costis M + N I/Os

" Total Cost=3 (M + N)

Hash Join: Cost (Cont’d)

= Total Cost =3 (M + N)

" Joining Reserves and Sailors would cost 3 (500 + 1000)
= 4500 1/0s

= Assuming 10ms per I/0O, hash join takes less than
1 minute!

* This underscores the importance of using a good join
algorithm (e.g., Simple NL Join takes ~140 hours!)

[But, so far we have been assuming that partitions fit in memory! J

Memory Requirements and

Overflow Handling
" How can we increase the chances for a given partition
in the probing phase to fit in memory?
= Maximize the number of partitions in the building phase

" |f we partition R (or S) into k partitions, what would be
the size of each partition (in terms of B)?

= At least k output buffer pages and 1 input buffer page
= Given B buffer pages, k=B-1
* Hence, the size of an R (or S) partition = M/B-1

= What is the number of pages in the (in-memory) hash
table built during the probing phase per a partition?

= £.M/B-1, where fis a fudge factor

Memory Requirements and

Overflow Handling

" What do we need else in the probing phase?
= A buffer page for scanning the S partition
= An output buffer page

" What is a good value of B as such?
= B>fM/B-1+2
= Therefore, we need ¥B > / f.M

= What if a partition overflows?

= Apply the hash join technique recursively (as is the case
with the projection operation)

Hash Join vs. Sort-Merge Join

" If B>+M (Misthe # of pagesin the smaller
relation) and we assume uniform partitioning, the
cost of hash join is 3(M+N) I/Os

= If B>+/N (Nisthe # of pages in the larger
relation), the cost of sort-merge join is 3(M+N) I/Os

[Which algorithm to use, hash join or sort-merge join? J

Hash Join vs. Sort-Merge Join

If the available number of buffer pages falls betweenv M
and+/ N, hash join is preferred (why?)

Hash Join shown to be highly parallelizable (beyond the
scope of the class)

Hash join is sensitive to data skew while sort-merge join
IS not

Besults are sorted after applying sort-merge join (may help
upstream operators)

Sort-merge join goes fast if one of the input relations is
already sorted

The Join Operation

= We will study five join algorithms, two which enumerate
the cross-product and three which do not

= Join algorithms which enumerate the cross-product:
=|Simple Nested Loops Join ‘/
" | Block Nested Loops Join

= Join algorithms which do not enumerate the cross-product:
" Index Nested Loops Join
" |Sort-Merge Join ‘/
=|Hash Join

A dgdyglagy gl =i o aly

Carnegie Mellon University Qatar

Next Class

\ Queries /

Query Optimization
and Execution

4 Continue...
4
U4

Transaction

i
I Recovery

Manager

Lock
Manager

P dgdgglagy gl =i 2 aly

Carnegie Mellon University Qatar

