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Today…
 Last Session:

 DBMS Internals- Part VI
 Algorithms for Relational Operations

 Today’s Session:

 DBMS Internals- Part VII
 Algorithms for Relational Operations (Cont’d)

 Announcements:

 Project 3 is due on Thursday, April 2nd by midnight

 Quiz II will be held on Thursday, April 9th (all concepts
covered after the midterm are included)
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Relational Operations
 We will consider how to implement:

 Selection (     )

 Projection (     )

 Join (        )

 Set-difference (     )

 Union (     )

 Aggregation (SUM, MIN, etc.) and GROUP BY

 Since each operation returns a relation, ops can be composed!

 After we cover how to implement operations, we will discuss 
how to optimize queries (formed by composing operators)








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The Join Operation
 Consider the following query, Q, which implies a join:

 How can we evaluate Q?
 Compute R × S
 Select (and project) as required

 But, the result of a cross-product is typically much larger 
than the result of a join

 Hence, it is very important to implement joins without 
materializing the underlying cross-product

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid



The Join Operation

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join



Assumptions

 We assume the following two relations:

 For Reserves, we assume:

 Each tuple is 40 bytes long,  100 tuples per page, 1000 pages

 For Sailors, we assume:

 Each tuple is 50 bytes long,  80 tuples per page, 500 pages

 Our cost metric is the number of I/Os

Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)



Assumptions (Cont’d)

 We assume equality joins with:

 R representing Reserves and S representing Sailors

 M pages in R, pR tuples per page, m tuples total

 N pages in S, pS tuples per page, n tuples total

 We ignore the output and computational costs



The Join Operation

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join





Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A, ......)

m

n



Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A, ......)

m

n

for each tuple r of R
for each tuple s of S

print, if they match



Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A, ......)

m

n

for each tuple r of R
for each tuple s of S

print, if they match

Outer Relation

Inner Relation



Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A, ......)

m

n

How many disk accesses (‘M’ and ‘N’ are the 
numbers of pages for ‘R’ and ‘S’)?



Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A, ......)

m

n

How many disk accesses (‘M’ and ‘N’ are the 
numbers of pages for ‘R’ and ‘S’)?

I/O Cost = M+m*N



Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A, ......)

m

n

- Cost = M + (pR * M) * N = 1000 + 100*1000*500 I/Os
- At 10ms/IO, total = ~6 days (!)

I/O Cost = M+m*N

Can we do better?



Nested Loops Join: A Simple Refinement

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 Algorithm:

COST= ?

Read in a page of R

Read in a page of S

Print matching tuples



R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 Algorithm:

COST= M+M*N

Nested Loops Join: A Simple Refinement

Read in a page of R

Read in a page of S

Print matching tuples



Nested Loops Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 Which relation should be the outer?

COST= M+M*N



Nested Loops Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 Which relation should be the outer?

 A: The smaller (page-wise)

COST= M+M*N



Nested Loops Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 M=1000, N=500 - if larger is the outer:

 Cost = 1000 + 1000*500 = 501,000 

= 5010 sec (~ 1.4h)
COST= M+M*N



Nested Loops Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 M=1000, N=500 - if smaller is the outer:

 Cost = 500 + 1000*500 = 500,500 

= 5005 sec (~ 1.4h)
COST= N+M*N



Summary: Simple Nested Loops Join

 What if we do not apply the page-oriented 
refinement?
 Cost = M+ (pR * M) * N = 1000 + 100*1000*500 I/Os
 At 10ms/IO, total = ~6 days (!)

 What if we apply the page-oriented refinement?
 Cost = M * N + M  = 1000*500+1000 I/Os
 At 10ms/IO, total = 1.4 hours (!)

 What if the smaller relation is the outer?
 Slightly better



The Join Operation

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join





Block Nested Loops

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 What if we have B buffer pages available?



Block Nested Loops

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 What if we have B buffer pages available?

 A: Give B-2 buffer pages to outer, 1 to inner, 

1 for output



Block Nested Loops

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 Algorithm:

COST= ?

Read in B-2 pages of R

Read in a page of S

Print matching tuples



Block Nested Loops

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 Algorithm:

COST= M+M/(B-2)*N

Read in B-2 pages of R

Read in a page of S

Print matching tuples



Block Nested Loops

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

• And, actually:

• Cost = M + ceiling(M/(B-2)) * N

COST= M+M/(B-2)*N



Block Nested Loops

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

• If the smallest (outer) relation fits in memory? 

• That is, B = N+2

• Cost =?



Block Nested Loops

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

• If the smallest (outer) relation fits in memory? 

• That is, B = N+2

• Cost =N+M (minimum!)



Nested Loops - Guidelines

 Pick as outer the smallest table 
(= fewest pages)

 Fit as much of it in memory as possible

 Loop over the inner



The Join Operation

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join





34

 What if there is an index on one of the 
relations on the join attribute(s)?

 A: Leverage the index by making the 
indexed relation inner

Index Nested Loops Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples



35

 Assuming an index on S:

Index Nested Loops Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

for each tuple r of R
for each tuple s of S where ri == sj

Add (r, s) to result



36

 What will be the cost?

 Cost: M + m * c    (c: look-up cost)

Index Nested Loops Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

‘c’ depends on the type of index, the adopted alternative 
and whether the index is clustered or un-clustered!



The Join Operation

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join




Sort-Merge Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 Sort both relations on join attribute(s)

 Scan each relation and merge

 This works only for equality join conditions!



Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?



Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0
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28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

NO
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Sort-Merge Join: An Example
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Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Output the two tuples

Continue the 
same way!



Sort-Merge Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 What is the cost?

 ~ 2*M*logM/logB + 2*N* logN/logB + M + N



Sort-Merge Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 Assuming 100 buffer pages, Reserves and 

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block Nested Loops Join = 7500 I/Os



Sort-Merge Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 Assuming 35 buffer pages, Reserves and 

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block Nested Loops Join = 15000 I/Os



Sort-Merge Join

R(A,..)

S(A, ......)M pages,

m tuples
N pages,

n tuples

 Assuming 300 buffer pages, Reserves and 

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block Nested Loops Join = 2500 I/Os

The Block Nested Loops Join is more sensitive to the buffer size!



The Join Operation

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join 



Hash Join

 The join algorithm based on hashing has two phases:

 Partitioning (also called Building) Phase

 Probing (also called Matching) Phase

 Idea: Hash both relations on the join attribute into k
partitions, using the same hash function h

 Premise: R tuples in partition i can join only with S 
tuples in the same partition i



Hash Join: Partitioning Phase

 Partition both relations using hash function h

B main memory buffers DiskDisk

Original 
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Two tuples that belong to different partitions are 
guaranteed not to match



Hash Join: Probing Phase

 Read in a partition of R, hash it using h2 (<> h)

 Scan the corresponding partition of S and search 
for matches

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output 
buffer

Disk

Join Result

hash
fn
h2

h2



Hash Join: Cost

 What is the cost of the partitioning phase?

 We need to scan R and S, and write them out once

 Hence, cost is 2(M+N) I/Os

 What is the cost of the probing phase?

 We need to scan each partition once (assuming no partition 
overflows) of R and S

 Hence, cost is M + N I/Os

 Total Cost = 3 (M + N)



Hash Join: Cost (Cont’d)

 Total Cost = 3 (M + N)

 Joining Reserves and Sailors would cost 3 (500 + 1000) 
= 4500 I/Os

 Assuming 10ms per I/O, hash join takes less than 
1 minute!

 This underscores the importance of using a good join 
algorithm (e.g., Simple NL Join takes ~140 hours!)

But, so far we have been assuming that partitions fit in memory!



Memory Requirements and 
Overflow Handling

 How can we increase the chances for a given partition 
in the probing phase to fit in memory?
 Maximize the number of partitions in the building phase

 If we partition R (or S) into k partitions, what would be 
the size of each partition (in terms of B)?
 At least k output buffer pages and 1 input buffer page
 Given B buffer pages, k = B – 1
 Hence, the size of an R (or S) partition = M/B-1

 What is the number of pages in the (in-memory) hash 
table built during the probing phase per a partition?
 f.M/B-1, where f is a fudge factor



Memory Requirements and 
Overflow Handling

 What do we need else in the probing phase?
 A buffer page for scanning the S partition

 An output buffer page

 What is a good value of B as such?
 B > f.M/B-1 + 2

 Therefore, we need ~ 

 What if a partition overflows?
 Apply the hash join technique recursively (as is the case 

with the projection operation)

MfB .



Hash Join vs. Sort-Merge Join

 If                     (M is the # of pages in the smaller 
relation) and we assume uniform partitioning, the 
cost of hash join is 3(M+N) I/Os

 If                    (N is the # of pages in the larger
relation), the cost of sort-merge join is 3(M+N) I/Os

MB 

NB 

Which algorithm to use, hash join or sort-merge join?



Hash Join vs. Sort-Merge Join
 If the available number of buffer pages falls between

and         , hash join is preferred (why?)

 Hash Join shown to be highly parallelizable (beyond the 
scope of the class)

 Hash join is sensitive to data skew while sort-merge join 
is not

 Results are sorted after applying sort-merge join (may help 
“upstream” operators)

 Sort-merge join goes fast if one of the input relations is 
already sorted

N

M



The Join Operation

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join



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Relational Operators
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Disk Space Management

DB

Queries
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Manager

Recovery 
Manager

Continue…


