
Database Applications (15-415)

DBMS Internals- Part VII
Lecture 18, March 29, 2015

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part VI
 Algorithms for Relational Operations

 Today’s Session:

 DBMS Internals- Part VII
 Algorithms for Relational Operations (Cont’d)

 Announcements:

 Project 3 is due on Thursday, April 2nd by midnight

 Quiz II will be held on Thursday, April 9th (all concepts
covered after the midterm are included)

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Relational Operations
 We will consider how to implement:

 Selection ()

 Projection ()

 Join ()

 Set-difference ()

 Union ()

 Aggregation (SUM, MIN, etc.) and GROUP BY

 Since each operation returns a relation, ops can be composed!

 After we cover how to implement operations, we will discuss
how to optimize queries (formed by composing operators)









Outline

Introduction

The Selection Operation

The Projection Operation

The Join Operation 

Last
Class

The Join Operation
 Consider the following query, Q, which implies a join:

 How can we evaluate Q?
 Compute R × S
 Select (and project) as required

 But, the result of a cross-product is typically much larger
than the result of a join

 Hence, it is very important to implement joins without
materializing the underlying cross-product

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join

Assumptions

 We assume the following two relations:

 For Reserves, we assume:

 Each tuple is 40 bytes long, 100 tuples per page, 1000 pages

 For Sailors, we assume:

 Each tuple is 50 bytes long, 80 tuples per page, 500 pages

 Our cost metric is the number of I/Os

Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

Assumptions (Cont’d)

 We assume equality joins with:

 R representing Reserves and S representing Sailors

 M pages in R, pR tuples per page, m tuples total

 N pages in S, pS tuples per page, n tuples total

 We ignore the output and computational costs

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join



Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

for each tuple r of R
for each tuple s of S

print, if they match

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

for each tuple r of R
for each tuple s of S

print, if they match

Outer Relation

Inner Relation

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

How many disk accesses (‘M’ and ‘N’ are the
numbers of pages for ‘R’ and ‘S’)?

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

How many disk accesses (‘M’ and ‘N’ are the
numbers of pages for ‘R’ and ‘S’)?

I/O Cost = M+m*N

Simple Nested Loops Join

• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

m

n

- Cost = M + (pR * M) * N = 1000 + 100*1000*500 I/Os
- At 10ms/IO, total = ~6 days (!)

I/O Cost = M+m*N

Can we do better?

Nested Loops Join: A Simple Refinement

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 Algorithm:

COST= ?

Read in a page of R

Read in a page of S

Print matching tuples

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 Algorithm:

COST= M+M*N

Nested Loops Join: A Simple Refinement

Read in a page of R

Read in a page of S

Print matching tuples

Nested Loops Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 Which relation should be the outer?

COST= M+M*N

Nested Loops Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 Which relation should be the outer?

 A: The smaller (page-wise)

COST= M+M*N

Nested Loops Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 M=1000, N=500 - if larger is the outer:

 Cost = 1000 + 1000*500 = 501,000

= 5010 sec (~ 1.4h)
COST= M+M*N

Nested Loops Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 M=1000, N=500 - if smaller is the outer:

 Cost = 500 + 1000*500 = 500,500

= 5005 sec (~ 1.4h)
COST= N+M*N

Summary: Simple Nested Loops Join

 What if we do not apply the page-oriented
refinement?
 Cost = M+ (pR * M) * N = 1000 + 100*1000*500 I/Os
 At 10ms/IO, total = ~6 days (!)

 What if we apply the page-oriented refinement?
 Cost = M * N + M = 1000*500+1000 I/Os
 At 10ms/IO, total = 1.4 hours (!)

 What if the smaller relation is the outer?
 Slightly better

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join



Block Nested Loops

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 What if we have B buffer pages available?

Block Nested Loops

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 What if we have B buffer pages available?

 A: Give B-2 buffer pages to outer, 1 to inner,

1 for output

Block Nested Loops

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 Algorithm:

COST= ?

Read in B-2 pages of R

Read in a page of S

Print matching tuples

Block Nested Loops

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 Algorithm:

COST= M+M/(B-2)*N

Read in B-2 pages of R

Read in a page of S

Print matching tuples

Block Nested Loops

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

• And, actually:

• Cost = M + ceiling(M/(B-2)) * N

COST= M+M/(B-2)*N

Block Nested Loops

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

• If the smallest (outer) relation fits in memory?

• That is, B = N+2

• Cost =?

Block Nested Loops

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

• If the smallest (outer) relation fits in memory?

• That is, B = N+2

• Cost =N+M (minimum!)

Nested Loops - Guidelines

 Pick as outer the smallest table
(= fewest pages)

 Fit as much of it in memory as possible

 Loop over the inner

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join



34

 What if there is an index on one of the
relations on the join attribute(s)?

 A: Leverage the index by making the
indexed relation inner

Index Nested Loops Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

35

 Assuming an index on S:

Index Nested Loops Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

for each tuple r of R
for each tuple s of S where ri == sj

Add (r, s) to result

36

 What will be the cost?

 Cost: M + m * c (c: look-up cost)

Index Nested Loops Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

‘c’ depends on the type of index, the adopted alternative
and whether the index is clustered or un-clustered!

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join


Sort-Merge Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 Sort both relations on join attribute(s)

 Scan each relation and merge

 This works only for equality join conditions!

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

NO

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Output the two tuples

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Output the two tuples

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

NO

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Output the two tuples

Continue the
same way!

Sort-Merge Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 What is the cost?

 ~ 2*M*logM/logB + 2*N* logN/logB + M + N

Sort-Merge Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 Assuming 100 buffer pages, Reserves and

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block Nested Loops Join = 7500 I/Os

Sort-Merge Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 Assuming 35 buffer pages, Reserves and

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block Nested Loops Join = 15000 I/Os

Sort-Merge Join

R(A,..)

S(A,)M pages,

m tuples
N pages,

n tuples

 Assuming 300 buffer pages, Reserves and

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block Nested Loops Join = 2500 I/Os

The Block Nested Loops Join is more sensitive to the buffer size!

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join 

Hash Join

 The join algorithm based on hashing has two phases:

 Partitioning (also called Building) Phase

 Probing (also called Matching) Phase

 Idea: Hash both relations on the join attribute into k
partitions, using the same hash function h

 Premise: R tuples in partition i can join only with S
tuples in the same partition i

Hash Join: Partitioning Phase

 Partition both relations using hash function h

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Two tuples that belong to different partitions are
guaranteed not to match

Hash Join: Probing Phase

 Read in a partition of R, hash it using h2 (<> h)

 Scan the corresponding partition of S and search
for matches

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

Hash Join: Cost

 What is the cost of the partitioning phase?

 We need to scan R and S, and write them out once

 Hence, cost is 2(M+N) I/Os

 What is the cost of the probing phase?

 We need to scan each partition once (assuming no partition
overflows) of R and S

 Hence, cost is M + N I/Os

 Total Cost = 3 (M + N)

Hash Join: Cost (Cont’d)

 Total Cost = 3 (M + N)

 Joining Reserves and Sailors would cost 3 (500 + 1000)
= 4500 I/Os

 Assuming 10ms per I/O, hash join takes less than
1 minute!

 This underscores the importance of using a good join
algorithm (e.g., Simple NL Join takes ~140 hours!)

But, so far we have been assuming that partitions fit in memory!

Memory Requirements and
Overflow Handling

 How can we increase the chances for a given partition
in the probing phase to fit in memory?
 Maximize the number of partitions in the building phase

 If we partition R (or S) into k partitions, what would be
the size of each partition (in terms of B)?
 At least k output buffer pages and 1 input buffer page
 Given B buffer pages, k = B – 1
 Hence, the size of an R (or S) partition = M/B-1

 What is the number of pages in the (in-memory) hash
table built during the probing phase per a partition?
 f.M/B-1, where f is a fudge factor

Memory Requirements and
Overflow Handling

 What do we need else in the probing phase?
 A buffer page for scanning the S partition

 An output buffer page

 What is a good value of B as such?
 B > f.M/B-1 + 2

 Therefore, we need ~

 What if a partition overflows?
 Apply the hash join technique recursively (as is the case

with the projection operation)

MfB .

Hash Join vs. Sort-Merge Join

 If (M is the # of pages in the smaller
relation) and we assume uniform partitioning, the
cost of hash join is 3(M+N) I/Os

 If (N is the # of pages in the larger
relation), the cost of sort-merge join is 3(M+N) I/Os

MB 

NB 

Which algorithm to use, hash join or sort-merge join?

Hash Join vs. Sort-Merge Join
 If the available number of buffer pages falls between

and , hash join is preferred (why?)

 Hash Join shown to be highly parallelizable (beyond the
scope of the class)

 Hash join is sensitive to data skew while sort-merge join
is not

 Results are sorted after applying sort-merge join (may help
“upstream” operators)

 Sort-merge join goes fast if one of the input relations is
already sorted

N

M

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join




Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

