
Database Applications (15-415)

DBMS Internals- Part XI
Lecture 22, April 12, 2015

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part X
 Query Optimization (Cont’d)

 Today’s Session:
 DBMS Internals- Part XI

 Transaction Management

 Announcements:
 The grades of Quiz II are out
 PS4 is due today by midnight
 PS5 will be posted on Tuesday. It is due on Thursday,

April 23rd

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

A Brief Primer on Transaction
Management

Anomalies Due to Concurrency

2PL and Strict 2PL Locking Protocols

Schedules with Aborted Transactions

Concurrent Execution of Programs

 A database is typically shared by a large number of users

 DBMSs schedule users’ programs concurrently

 While one user program is waiting for an I/O access to be
satisfied, the CPU can process another program

 Better system throughput

 Interleaved execution of a short program with a long
program allows the short program to complete quickly

 Better response time

 Better for fairness reasons

Transactions
 Any one execution of a user program in a DBMS is denoted

as a transaction
 Executing the same program several times will generate

several transactions

 A transaction is the basic unit of change as seen by a DBMS
 E.g., Transfer $100 from account A to account B

 A transaction may carry out many operations on data, but
DBMSs are only concerned about reads and writes

 Thus, in essence a transaction becomes a sequence of reads
and writes

Transactions (Cont’d)

 In addition to reading and writing, a transaction must
specify as its final action:

 Either Commit (i.e., complete successfully)

 Or Abort (i.e., terminate and undo actions)

 We make two assumptions:

 Transactions interact only via database reads and
writes (i.e., no message passing)

 A database is a fixed collection of independent
objects (A, B, C, etc.)

Schedules
 A schedule is a list of actions (i.e., read, write, abort, and/or

commit) from a set of transactions

 The order in which two actions of a transaction T appear in a
schedule must be the same as they appear in T itself

 Assume T1 = [R(A), W(A)] and T2 = [R(B), W(B), R(C), W(C)]
T1 T2

R(A)
W(A)

R(B)
W(B)

R(C)
W(C)

T1 T2

R(A)
W(A)

R(B)
W(B)
R(C)
W(C)

T1 T2

R(A)
W(A)

R(C)
W(C)

R(B)
W(B)

Serial Schedules
 A complete schedule must contain all the actions of

every transaction that appears on it

 If the actions of different transactions are not
interleaved, the schedule is called a serial schedule

T1 T2

R(A)
W(A)
Commit

R(B)
W(B)

R(C)
W(C)
Commit

T1 T2

R(A)
W(A)
Commit

R(A)
W(A)
R(C)
W(C)
Commit

A Serial Schedule A Non-Serial Schedule

Serializable Schedules
 Two schedules are said to be equivalent if for any database

state, the effect of executing the 1st schedule is identical to
the effect of executing the 2nd schedule

 A serializable schedule is a schedule that is equivalent to a
serial schedule

T1 T2

R(A)
W(A)

R(B)
W(B)

Commit

R(A)
W(A)

R(B)
W(B)
Commit

A Serializable Schedule

T1 T2

R(A)
W(A)
R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

A Serial Schedule

Equivalent

T1 T2

R(A)

W(A)
R(B)
W(B)

Commit

R(A)
W(A)

R(B)
W(B)

Commit

Another Serializable Schedule

Equivalent

Examples

 Assume transactions T1 and T2 as follows:

 T1 can be thought of as transferring $100 from A’s
account to B’s account

 T2 can be thought of as crediting accounts A and B with
a 6% interest payment

T1: BEGIN A=A-100, B=B +100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Examples: A Serial Schedule

 Assume transactions T1 and T2 as follows:

T1: BEGIN A=A-100, B=B +100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Bal=1000 Bal=1000

T1: Transfer $100 from A to B T2 = Add interest of 6% to A and B

3 1

42Bal=1060

Account A Account B

Bal=1060Bal=960 Bal=1160

Examples: Another Serial Schedule

 Assume transactions T1 and T2 as follows:

T1: BEGIN A=A-100, B=B +100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Bal=1000 Bal=1000

T1: Transfer $100 from A to B T2 = Add interest of 6% to A and B

Bal=900

1 3

2 Bal=11004Bal=954

Account A Account B

Bal=1166

Previously:
Account A = 960
Account B = 1160

Examples: A Serializable Schedule

 Assume transactions T1 and T2 as follows:

T1: BEGIN A=A-100, B=B +100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Bal=1000 Bal=1000

T1: Transfer $100 from A to B T2 = Add interest of 6% to A and B

Bal=900

1 4

3 Bal=11002Bal=954

Account A Account B

Bal=1166

A Previous Serial Schedule:
Account A = 954

Account B = 1166

Comments

 There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together

 However, the net effect must be equivalent to these
two transactions running serially in some order

 Executing transactions serially in different orders may
produce different results, but they are all acceptable!

 The DBMS makes no guarantees about which result will
be the outcome of an interleaved execution

Outline

A Brief Primer on Transaction
Management

Anomalies Due to Concurrency

2PL and Strict 2PL Locking Protocols

Schedules with Aborted Transactions

Anomalies
 Interleaving actions of different transactions can leave the

database in an inconsistent state

 Two actions on the same data object are said to conflict if at
least one of them is a write

 There are 3 anomalies that can arise upon interleaving
actions of different transactions (say, T1 and T2):
 Write-Read (WR) Conflict: T2 reads a data object previously

written by T1
 Read-Write (RW) Conflict: T2 writes a data object previously

read by T1
 Write-Write (WW) Conflict: T2 writes a data object previously

written by T1

Reading Uncommitted Data: WR Conflicts

 WR conflicts arise when transaction T2 reads a data object A
that has been modified by another transaction T1, which
has not yet committed

 Such a read is called a dirty read

 Assume T1 and T2 such that:

 T1 transfers $100 from A’s account to B’s account

 T2 credits accounts A and B with a 6% interest payment

T1: BEGIN A=A-100, B=B +100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Reading Uncommitted Data: WR Conflicts

 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B

 T1 credits $100 to account B

Bal=1000 Bal=1000

T1: Transfer $100 from A to B T2 = Add interest of 6% to A and B

Account A Account B

Reading Uncommitted Data: WR Conflicts

 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B

 T1 credits $100 to account B

Bal=1000 Bal=1000

T1: Transfer $100 from A to B T2 = Add interest of 6% to A and B

Bal=900

1 2

43Bal=954

Account A Account B

Bal=1060Bal=1160

Different than any
serial schedule. (I.e.,

Neither: [A = 954 and B = 1166]
Nor: [A = 960 and B = 1160])

1

2 and 3

4

Reading Uncommitted Data: WR Conflicts

 T1 and T2 can be represented by the following schedule:

T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

The value of A written by T1 is read
by T2 before T1 has completed all

its changes!

Why is this a problem?

Reading Uncommitted Data: WR Conflicts

 T1 and T2 can be represented by the following schedule:

T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

The value of A written by T1 is read
by T2 before T1 has completed all

its changes!

Why is this a problem?

 T1 may write some value into A that makes the database inconsistent
 As long as T1 overwrites this value with a ‘correct’ value of A before committing,

no harm is done if T1 and T2 are run in some serial order (this is because T2
would then not see the temporary inconsistency)

Reading Uncommitted Data: WR Conflicts

 T1 and T2 can be represented by the following schedule:

T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

The value of A written by T1 is read
by T2 before T1 has completed all

its changes!

Why is this a problem?

Note that although a transaction must leave a database in a
consistent state after it completes, it is not required to keep the

database consistent while it is still in progress!

Unrepeatable Reads: RW Conflicts

 RW conflicts arise when transaction T2 writes a data
object A that has been read by another transaction T1,
while T1 is still in progress

 If T1 tries to read A again, it will get a different result!

 Such a read is called an unrepeatable read

 Assume A is the number of available copies for a book

 A transaction that places an order on the book reads A,
checks that A > 0 and decrements A

 Assume two transactions, T1 and T2

Unrepeatable Reads: RW Conflicts

 Suppose that T1 and T2 actions are interleaved as follows:

 T1 reads A

 T2 reads A, decrements A and commit

 T1 tries to decrement A

A=1

T1: Places an order on a book
of quantity A

T2 = Places an order on a book
of quantity A

1: Read A = 1
2: Read A = 1

A=0 3: Decrement A & Commit4: Decrement A = ERROR!

This situation will never arise in a serial execution of T1 and T2; T2 would read A
and see 0 and therefore not proceed with placing an order!

Overwriting Uncommitted Data:
WW Conflicts

 WW conflicts arise when transaction T2 writes a data object
A that has been written by another transaction T1, while T1
is still in progress

 Suppose that Mohammad and Ahmad are two employees
and their salaries must be kept equal

 Assume T1 sets Mohammad’s and Ahmad’s salaries to $1000

 Assume T2 sets Mohammad’s and Ahmad’s salaries to $2000

Overwriting Uncommitted Data:
WW Conflicts

MS=0 AS=0

T1: Sets Salaries to $1000 T2 = Sets Salaries to $2000

3 1

42

Mohammad’s Salary Ahmad’s Salary

AS=2000MS=2000

AS=1000MS=1000

Overwriting Uncommitted Data:
WW Conflicts

MS=0 AS=0

T1: Sets Salaries to $1000 T2 = Sets Salaries to $2000

1 3

24

Mohammad’s Salary Ahmad’s Salary

MS=1000 AS=1000AS=2000MS=2000

Either serial schedule is acceptable from a consistency standpoint (although
Mohammad and Ahmad may prefer a higher salary!)

Neither T1 nor T2 reads a salary value before writing it- such a write is called a
blind write!

Overwriting Uncommitted Data:
WW Conflicts

MS=0 AS=0

T1: Sets Salaries to $1000 T2 = Sets Salaries to $2000

1 2

34

Mohammad’s Salary Ahmad’s Salary

MS=1000 AS=2000MS=2000 AS=1000

The problem is that we have a lost update. In particular, T2
overwrote Mohammad’s Salary as set by T1 (this will never

happen with a serializable schedule!)

Outline

A Brief Primer on Transaction
Management

Anomalies Due to Concurrency

2PL and Strict 2PL Locking Protocols

Schedules with Aborted Transactions

Locking Protocols

 WR, RW and WW anomalies can be avoided using a
locking protocol

 A locking protocol:
 Is a set of rules to be followed by each transaction to ensure

that only serializable schedules are allowed (extended later)

 Associates a lock with each database object, which could be of
different types (e.g., shared or exclusive)

 Grants and denies locks to transactions according to the
specified rules

 The part of the DBMS that keeps track of locks is called the
lock manager

Lock Managers
 Usually, a lock manager in a DBMS maintains three types of

data structures:
 A queue, Q, for each lock, L,

to hold its pending requests

 A lock table, which keeps for
each L associated with
each object, O, a record R
that contains:
 The type of L (e.g., shared or exclusive)
 The number of transactions currently holding L on O
 A pointer to Q

 A transaction table, which maintains for each transaction, T, a
pointer to a list of locks held by T

Lock Queue 1
(Q1)

Object Lock # Type # of Trx Q

O L S 1 Q1

Lock Table

Transaction List 1 (LS1)
Trx List

T1 LS1

Transaction Table

Two-Phase Locking

 A widely used locking protocol, called Two-Phase
Locking (2PL), has two rules:

 Rule 1: if a transaction T wants to read (or write) an
object O, it first requests the lock manager for a shared
(or exclusive) lock on O

T0 T1 T2

Lock
Manager

Read Request

on Object O

“Shared”

Lock Granted

Q
u

e
u

e

T0 T1 T2

Lock
Manager

Write Request

on Object O
Lock Denied

Q
u

e
u

e

T0 T1 T2

Lock
Manager

Read

Request

on Object O

“Shared”

Lock Granted

Q
u

e
u

e

2

Time
t0 t1 t2

Two-Phase Locking

 A widely used locking protocol, called Two-Phase
Locking (2PL), has two rules:

 Rule 1: if a transaction T wants to read (or write) an
object O, it first requests the lock manager for a shared
(or exclusive) lock on O

T0 T1 T2

Lock
Manager

Release Lock

on Object O

Q
u

e
u

e

T0 T1 T2

Lock
Manager

“Exclusive” Lock

Granted

Q
u

e
u

e

T0 T1 T2

Lock
Manager

Release Lock

on Object O
Q

u
e

u
e

2

Time
t3 t4 t5

Two-Phase Locking

 A widely used locking protocol, called Two-Phase
Locking (2PL), has two rules:

 Rule 1: if a transaction T wants to read (or write) an
object O, it first requests the lock manager for a shared
(or exclusive) lock on O

T0 T1 T2

Lock
Manager Q

u
e

u
e

T0 T1 T2

Lock
Manager Q

u
e

u
e

T0 T1 T2

Lock
Manager

Q
u

e
u

e

Time

Read Request

on Object O

Lock Denied

2

Read

Request

on Object O

Lock Denied

2

Release Lock

on Object O

t6 t7 t8

Two-Phase Locking

 A widely used locking protocol, called Two-Phase
Locking (2PL), has two rules:

 Rule 1: if a transaction T wants to read (or write) an
object O, it first requests the lock manager for a shared
(or exclusive) lock on O

T0 T1 T2

Lock
Manager Q

u
e

u
e

T0 T1 T2

Lock
Manager Q

u
e

u
e

T0 T1 T2

Lock
Manager

Q
u

e
u

e

Time

2
2

“Shared”

Lock Granted

“Shared”

Lock Granted

t9 t9

Write Request

on Object O
Lock Denied

2

t10

Two-Phase Locking
 A widely used locking protocol, called Two-Phase Locking

(2PL), has two rules:

 Rule 2: T can release locks before it commits or aborts, and
cannot request additional locks once it releases any lock

 Thus, every transaction has a “growing” phase in which it
acquires locks, followed by a “shrinking” phase in which it
releases locks

locks

growing phase shrinking phase

Two-Phase Locking
 A widely used locking protocol, called Two-Phase Locking

(2PL), has two rules:

 Rule 2: T can release locks before it commits or aborts, and
cannot request additional locks once it releases any lock

 Thus, every transaction has a “growing” phase in which it
acquires locks, followed by a “shrinking” phase in which it
releases locks

locks

violation of 2PL

Resolving RW Conflicts Using 2PL

 Suppose that T1 and T2 actions are interleaved as follows:

 T1 reads A

 T2 reads A, decrements A and commit

 T1 tries to decrement A

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)

W(A)
Commit

R(A)
W(A)
Commit

Exposes RW Anomaly

T1 T2

EXCLUSIVE(A)
R(A)

W(A)
Commit

EXCLUSIVE(A)
R(A)
W(A)
Commit

Lock(A)

Wait

RW
Conflict

Resolved!

Resolving RW Conflicts Using 2PL

 Suppose that T1 and T2 actions are interleaved as follows:

 T1 reads A

 T2 reads A, decrements A and commit

 T1 tries to decrement A

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)

W(A)
Commit

R(A)
W(A)
Commit

Exposes RW Anomaly

T1 T2

EXCLUSIVE(A)
R(A)

W(A)
Commit

Lock(A)

Wait

But, it can
limit

parallelism!

EXCLUSIVE(A)
R(A)
W(A)
Commit

Resolving WW Conflicts Using 2PL
 Suppose that T1 and T2 actions are interleaved as follows:

 T1 sets Mohammad’s Salary to $1000

 T2 sets Ahmad’s Salary to $2000

 T1 sets Ahmad’s Salary to $1000

 T2 sets Mohammad’s Salary to $2000

 T1 and T2 can be represented by the following schedule:

T1 T2

W(MS)

W(AS)
Commit

W(AS)

W(MS)
Commit

Exposes WW Anomaly
(assuming, MS & AS must be kept equal)

T1 T2

EXCLUSIVE(MS)
EXCLUSIVE(AS)
W(MS)
W(AS)
Commit

EXCLUSIVE(AS)
EXCLUSIVE(MS)
W(AS)
W(MS)
Commit

Lock(AS)

Wait

WW
Conflict

Resolved!

Resolving WW Conflicts Using 2PL
 Suppose that T1 and T2 actions are interleaved as follows:

 T1 sets Mohammad’s Salary to $1000

 T2 sets Ahmad’s Salary to $2000

 T1 sets Ahmad’s Salary to $1000

 T2 sets Mohammad’s Salary to $2000

 T1 and T2 can be represented by the following schedule:

T1 T2

W(MS)

W(AS)
Commit

W(AS)

W(MS)
Commit

Exposes WW Anomaly
(assuming, MS & AS must be kept equal)

T1 T2

EXCLUSIVE(MS)
W(MS)

Lock(AS)
EXCLUSIVE(AS)
W(AS)
Lock(MS)

Wait

Deadlock!

Wait

Resolving WR Conflicts
 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B

 T1 credits $100 to account B

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

Exposes WR Anomaly

T1 T2

EXCLUSIVE(A)
EXCLUSIVE(B)
R(A)
W(A)
R(B)
W(B)
Commit EXCLUSIVE(A)

EXCLUSIVE(B)
R(A)
W(A)
R(B)
W(B)
Commit

Lock(A)

Wait

Lock(B)
WR

Conflict
Resolved!

Resolving WR Conflicts
 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B

 T1 credits $100 to account B

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

Exposes WR Anomaly

T1 T2

EXCLUSIVE(A)
EXCLUSIVE(B)
R(A)
W(A)

RELEASE(A)
R(B)
W(B)
Commit

EXCLUSIVE(A)
R(A)
W(A)
EXCLUSIVE(B)
R(B)
W(B)
Commit

Lock(A)

Wait
Lock(B)

WR
Conflict is

NOT
Resolved!

How can
we solve

this?

Strict Two-Phase Locking

 WR conflicts (as well as RW & WW) can be solved by
making 2PL stricter

 In particular, Rule 2 in 2PL can be modified
as follows:

 Rule 2: locks of a transaction T can only be released
after T completes (i.e., commits or aborts)

 This version of 2PL is called Strict Two-Phase Locking

Resolving WR Conflicts: Revisit
 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B

 T1 credits $100 to account B

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

Exposes WR Anomaly

T1 T2

EXCLUSIVE(A)
EXCLUSIVE(B)
R(A)
W(A)

RELEASE(A)
R(B)
W(B)
Commit

EXCLUSIVE(A)
R(A)
W(A)
EXCLUSIVE(B)
R(B)
W(B)
Commit

Lock(A)

Wait
Lock(B)

Not allowed with strict 2PL

Resolving WR Conflicts: Revisit
 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B

 T1 credits $100 to account B

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

Exposes WR Anomaly

T1 T2
EXCLUSIVE(A)
EXCLUSIVE(B)

R(A)
W(A)
R(B)
W(B)
Commit

EXCLUSIVE(A)
EXCLUSIVE(B)
R(A)
W(A)
R(B)
W(B)
Commit

Lock(A)

Wait

Lock(B)
WR Conflict
is Resolved!

But,
parallelism
is limited

more!

2PL vs. Strict 2PL

 Two-Phase Locking (2PL):
 Limits concurrency
 May lead to deadlocks
 May have ‘dirty reads’

 Strict 2PL:
 Limits concurrency more

(but, actions of different
transactions can still be interleaved)

 May still lead to deadlocks
 Avoids ‘dirty reads’

T1 T2

SHARED(A)
R(A)

EXCLUSIVE(C)
R(C)
W(C)
Commit

SHARED(A)
R(A)
EXECLUSIVE(B)
R(B)
W(B)
Commit

A Schedule with Strict 2PL
and Interleaved Actions

Performance of Locking

 Locking comes with delays mainly from blocking

 Usually, the first few transactions are unlikely to conflict
 Throughput can rise in proportion to the number of active

transactions

 As more transactions are executed concurrently, the
likelihood of blocking increases
 Throughput will increase more slowly with the number of

active transactions

 There comes a point when adding another active
transaction will actually decrease throughput
 When the system thrashes!

Performance of Locking (Cont’d)

 If a database begins to thrash, the DBA should
reduce the number of active transactions

 Empirically, thrashing is seen to occur when
30% of active transactions are blocked!

of Active Transactions

Th
ro

u
gh

p
u

t

Thrashing

Outline

A Brief Primer on Transaction
Management

Anomalies Due to Concurrency

2PL and Strict 2PL Locking Protocols

Schedules with Aborted Transactions

Schedules with Aborted Transactions

 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B, and commits

 T1 is aborted

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

T2 read a value for A that should have never been there!

How can we deal with the situation, assuming T2
had not yet committed?

Schedules with Aborted Transactions

 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B, and commits

 T1 is aborted

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

We can cascade the abort of T1 by aborting T2 as well!

This “cascading process” can be recursively applied to
any transaction that read A written by T1

T2 read a value for A that should have never been there!

Schedules with Aborted Transactions

 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B, and commits

 T1 is aborted

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

How can we deal with the situation, assuming T2
had actually committed?

The schedule is indeed unrecoverable!

T2 read a value for A that should have never been there!

Schedules with Aborted Transactions

 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B, and commits

 T1 is aborted

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

For a schedule to be recoverable, transactions
should commit only after all transactions whose

changes they read commit!

“Recoverable schedules” avoid cascading aborts!

T2 read a value for A that should have never been there!

Schedules with Aborted Transactions

 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B, and commits

 T1 is aborted

 T1 and T2 can be represented by the following schedule:
T1 T2

R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

How can we ensure “recoverable schedules”?

By using Strict 2PL!

T2 read a value for A that should have never been there!

Schedules with Aborted Transactions
 Suppose that T1 and T2 actions are interleaved as follows:

 T1 deducts $100 from account A

 T2 adds 6% interest to accounts A and B, and commits

 T1 is aborted

 T1 and T2 can be represented by the following schedule:

T1 T2

R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

T1 T2

EXCLUSIVE(A)
R(A)
W(A)

Abort
UNDO(T1) EXCLUSIVE(A)

R(A)
W(A)
EXCLUSIVE(B)
R(B)
W(B)
Commit

Lock(A)

Wait
Cascaded
aborts are
avoided!

Serializable Schedules: Redefined

 Two schedules are said to be equivalent if for any database
state, the effect of executing the 1st schedule is identical to
the effect of executing the 2nd schedule

 Previously: a serializable schedule is a schedule that is
equivalent to a serial schedule

 Now: a serializable schedule is a schedule that is equivalent
to a serial schedule over a set of committed transactions

 This definition captures serializability as well as recoverability

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

