
Database Applications (15-415)

DBMS Internals- Part XIII
Lecture 24, April 16, 2015

Mohammad Hammoud



Today…
 Last Session:

 Transaction Management

 Today’s Session:

 Recovery Management

 Announcement:

 PS3 grades are out



DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction 
Manager

Lock 
Manager

Recovery 
Manager



Outline

The ACID Properties

The Steal, No-Force Approach

Logging and the WAL Protocol

The Log





The ACID Properties

 Four properties must be ensured in the face of 
concurrent accesses and system failures:
 Atomicity: Either all actions of a transaction are carried 

out or none at all

 Consistency: Each transaction (run by itself with no 
concurrent execution) must preserve the consistency of 
the database

 Isolation: Execution of one transaction is isolated (or 
protected) from the effects of other concurrently running 
transactions

 Durability: If a transaction commits, its effects persist 
(even of the system crashes before all its changes are 
reflected on disk)



The ACID Properties

 Four properties must be ensured in the face of 
concurrent accesses and system failures:
 Atomicity: Either all actions of a transaction are carried 

out or non at all

 Consistency: Each transaction (run by itself with no 
concurrent execution) must preserve the consistency of 
the database

 Isolation: Execution of one transaction is isolated (or 
protected) from the effects of other concurrently running 
transactions

 Durability: If a transaction commits, its effects persist 
(even of the system crashes before all its changes are 
reflected on disk)

Atomicity: The Responsibility of the Recovery Manager

Consistency: The Responsibility of the User

Isolation: The Responsibility of the Transaction Manager

Durability: The Responsibility of the Recovery Manager



?

?



Outline

The ACID Properties

The Steal, No-Force Approach

Logging and the WAL Protocol

The Log





Ensuring Atomicity and Durability

 How can the recovery manager ensure atomicity and 
durability (in case of a failure)?

 It can ensure atomicity by undoing the actions of transactions 
that did not commit

 It can ensure durability by redoing (all) the actions of 
committed transactions 

Crash!

T1
T2
T3
T4
T5

 Desired Behavior after the 
system restarts:

 T1, T2 & T3 should 
be durable

 T4 & T5 should 
be rolled back



Stealing Frames and Forcing Pages

 To realize what it takes to implement a recovery manager, it 
is necessary to understand what happens during 
normal execution

 Can the changes made to an object O in the buffer pool by a 
transaction T be written to disk before T commits?

 Yes, if another transaction steals O’s frame (a steal approach is 
said to be in place)

 No, if stealing is not allowed (a no-steal approach is said to be 
in place)

 When T commits, must we ensure that all its changes are 
immediately forced to disk?

 Yes, if a force approach is used 

 No, if a no-force approach is used



Steal vs. No-Steal and Force vs. No-Force 
Approaches

 What if a no-steal approach is used? 

 We do not have to undo the changes of an aborted 

transaction (+)

 But this assumes that all pages modified by ongoing 

transactions can be accommodated in the buffer pool (-)

 What if a force approach is used? 

 We do not have to redo the changes of a committed 

transaction (+)

 But this results in excessive page I/O costs (e.g., when a 
highly used page is updated in succession by 20 transactions, 

it would be written to disk 20 times!) (-)



Steal vs. No-Steal and Force vs. No-Force 
Approaches (Cont’d)

 We indeed have four alternatives that we can employ:

 Most DBMSs use a steal, no-force approach

No-Steal Steal

Force Trivial, but undesired High I/O cost, but modified 
pages need not fit in the 
buffer pool

No-Force Low I/O cost, but modified 
pages need to fit in the 
buffer pool

Low I/O cost, and modified 
pages need not fit in the 
buffer pool

No-Steal Steal

Force Trivial, but undesired High I/O cost, but modified 
pages need not fit in the 
buffer pool

No-Force Low I/O cost, but modified 
pages need to fit in the 
buffer pool

Low I/O cost, and modified 
pages need not fit in the 
buffer pool

No-Steal Steal

Force Trivial, but undesired High I/O cost, but modified 
pages need not fit in the 
buffer pool

No-Force Low I/O cost, but modified 
pages need to fit in the 
buffer pool

Low I/O cost, and modified 
pages need not fit in the 
buffer pool

No-Steal Steal

Force Trivial, but undesired High I/O cost, but modified 
pages need not fit in the 
buffer pool

No-Force Low I/O cost, but modified 
pages need to fit in the 
buffer pool

Low I/O cost, and modified 
pages need not fit in the 
buffer pool

No-Steal Steal

Force Trivial, but undesired High I/O cost, but modified 
pages need not fit in the 
buffer pool

No-Force Low I/O cost, but modified 
pages need to fit in the 
buffer pool

Low I/O cost, and modified 
pages need not fit in the 
buffer pool 



Outline

The ACID Properties

The Steal, No-Force Approach

Logging and the WAL Protocol

The Log





Logging and the WAL Property

 In order to recover from failures, the recovery manager 
maintains a log of all modifications to the database on 
stable storage (which should survive crashes)

 After a failure, the DBMS “replays” the log to: 

 Redo committed transactions

 Undo uncommitted transactions

 Caveat: A log record describing a change must be written 
to stable storage before the change is made

 This is referred to as the Write-Ahead Log (WAL) property



The WAL Protocol

 WAL is the fundamental rule that ensures that a record of 
every change to the database is available after a crash

 What if a transaction made a change, committed, then a 
crash occurred (i.e., no log is kept “before” the crash)? 

 The no-force approach entails that this change may not have 
been written to disk before the crash

 Without a record of this change, there would be no way to 
ensure that the committed transaction survives the crash

 Hence, durability cannot be guaranteed!

To guarantee durability, a record for every change must be written to 
stable storage before the change is made 



The WAL Protocol (Cont’d)

 WAL is the fundamental rule that ensures that a record of 
every change to the database is available after a crash

 What if a transaction made a change, was progressing, and 
a crash occurred? 

 The steal approach entails that this change may have been 
written to disk before the crash

 Without a record of this change, there would be no way to 
ensure that the transaction can be rolled back (i.e., its 
effects would be unseen)

 Hence, atomicity cannot be guaranteed!
To guarantee atomicity, a record for every change must be written to 

stable storage before the change is made 



Outline

The ACID Properties

The Steal, No-Force Approach

Logging and the WAL Protocol

The Log




The Log

 The log is a file of records stored in stable storage

 Every log record is given a unique id called the Log 
Sequence Number (LSN)

 LSNs are assigned in a monotonically increasing order 
(this is required by the ARIES recovery algorithm- later)

 Every page contains the LSN of the most recent log 
record, which describes a change to this page

 This is called the pageLSN



The Log (Cont’d)

 The most recent portion of the log, called the log tail, 
is kept in main memory and forced periodically 
to disk

 The DBMS keeps track of the maximum LSN 
flushed to disk so far

 This is called the flushedLSN

 As per the WAL protocol, before a 
page is written to disk, 

pageLSN  flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM



When to Write Log Records?

 A log record is written after:
 Updating a Page

 An update log record is appended to the log tail

 The pageLSN of the page is set to the LSN of the update 
log record

 Committing a Transaction
 A commit log record is appended to the log tail

 The log tail is written to stable storage, up to and including the 
commit log record

 Aborting a Transaction  
 An abort log record is appended to the log tail

 An undo is initiated for this transaction



When to Write Log Records?

 A log record is written after:

 Ending (After Aborting or Committing) a Transaction:

 Additional steps are completed (later)

 An end log record is appended to the log tail

 Undoing an Update

 When the action (described by an update log record) is 
undone, a compensation log record (CLR) is appended to 
the log tail

 CLR describes the action taken to undo the action 
recorded in the corresponding update log record 



Log Records

prevLSN transID Type pageID Length Offset Before-Image After-Image

 The fields of a log record are usually as follows:

 Fields common to all log records:
 Update Log Records
 Commit Log Records
 Abort Log Records
 End Log Records
 Compensation Log Records

Additional Fields for only the Update Log Records

Can be used to redo and undo the changes!



Other Recovery-Related Structures

 In addition to the log, the following two tables are maintained:

 The Transaction Table

 One entry E for each active transaction

 E fields are:
 Transaction ID

 Status, which can be “Progress”, “Committed” or “Aborted”

 lastLSN, which is the most recent log record for this transaction

 The Dirty Page Table

 One entry E’ for each dirty page in the buffer pool

 E’ fields are:
 Page ID

 recLSN, which is the LSN of the first log record that caused 
the page to become dirty



An Example

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

PageID recLSN

P500

P600

P505

Dirty Page Table

TransID lastLSN

T1000

T2000

Transaction Table

LOG

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY



An Example

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

PageID recLSN

P500

P600

P505

Dirty Page Table

TransID lastLSN

T1000

T2000

Transaction Table

LOG

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY



An Example

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

PageID recLSN

P500

P600

P505

Dirty Page Table

TransID lastLSN

T1000

T2000

Transaction Table

LOG

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

PageID recLSN

P500

P600

P505



Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction 
Manager

Lock 
Manager

Recovery 
Manager

Continue…


