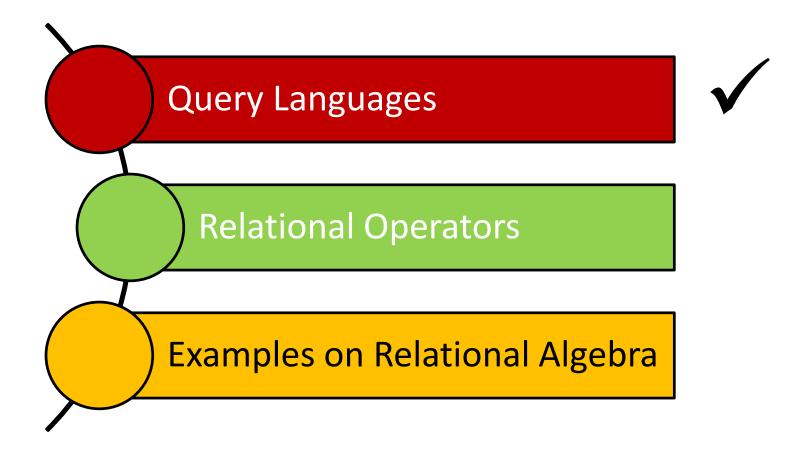
Database Applications (15-415)

Relational Algebra Lecture 5, January 25, 2015

Mohammad Hammoud

Today...

Last Session:


- The relational model
- Today's Session:
 - Relational algebra
 - Relational query languages (in general)
 - Relational operators
 - Additional examples

Announcements:

- PS2 will be posted by tomorrow
- PS1 grades will be out on Tuesday, Jan 27th

Outline

Relational Query Languages

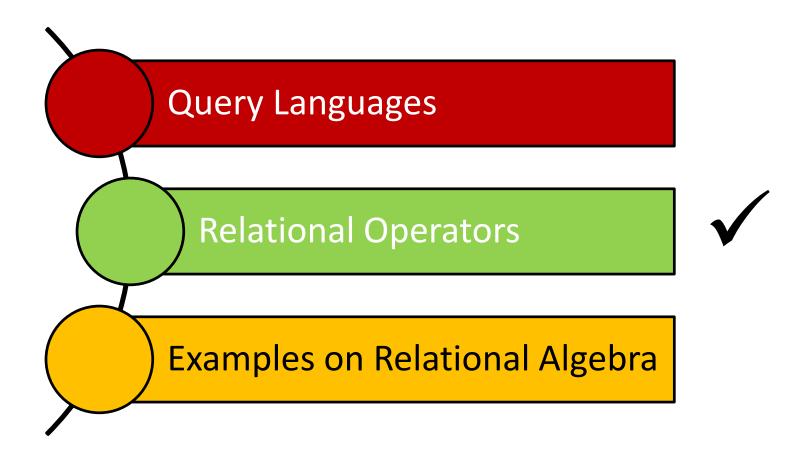
- Query languages (QLs) allow manipulating and retrieving data from databases
- The relational model supports simple and powerful QLs:
 - Strong formal foundation based on logic
 - High amenability for effective optimizations
 - Query Languages != programming languages!
 - QLs are not expected to be "Turing complete"
 - QLs are not intended to be used for complex calculations

ہے کارنیجی ہیلوں فی) egie Mellon University

QLs support easy and efficient access to large datasets

Formal Relational Query Languages

- There are two mathematical Query Languages which form the basis for commercial languages (e.g. SQL)
 - Relational Algebra
 - Queries are composed of operators
 - Each query describes a step-by-step procedure for computing the desired answer
 - Very useful for representing *execution plans*
 - Relational Calculus
 - Queries are subsets of first-order logic
 - Queries describe desired answers without specifying how they will be computed
 - A type of non-procedural (or declarative) formal query language

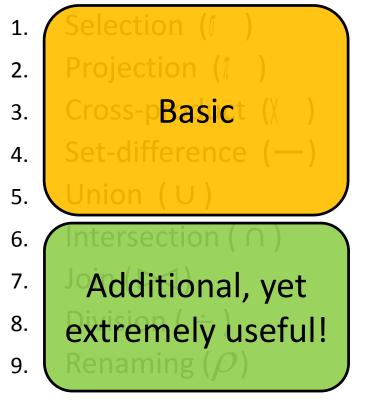

Formal Relational Query Languages

- There are two mathematical Query Languages which form the basis for commercial languages (e.g. SQL)
 - Relational Algebra
 - Queries are composed of operators
 - Each query describ This session's topic dure for computing the desired answer
 - Very useful for representing *execution plans*
 - Relational Calculus
 - Queries are subsets of first-order logic
 - Queries dNext session's topic (very briefly) g how they will be computed

A type of non-procedural (or declarative) formal query language

یجے کارنب دی میلوں فی قطر **Carnegie Mellon University Qatar**

Outline


Relational Algebra

- Operators (with notations):
 - 1. Selection (\emptyset)
 - 2. Projection (1)
 - 3. Cross-product (X)
 - 4. Set-difference (—)
 - 5. Union (U)
 - 6. Intersection (\cap)
 - 7. Join (▷<)
 - 8. Division (\div)
 - 9. Renaming (ho)
- Each operation returns a relation, hence, operations can be *composed*! (i.e., Algebra is "closed")

Carnegie Mellon University Qatar

Relational Algebra

Operators (with notations):

 Each operation returns a relation, hence, operations can be *composed*! (i.e., Algebra is "closed")

Carnegie Mellon University Qatar

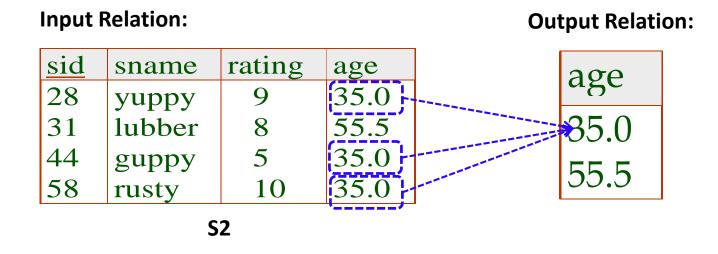
The Projection Operatation

• Projection: $\pi_{_{att-list}}(R)$

- "Project out" attributes that are NOT in *att-list*
- The schema of the output relation contains ONLY the fields in att-list, with the same names that they had in the input relation

• Example 1:
$$\pi_{sname,rating}(S2)$$

Input Relation:


Output Relation:

sid	sname	rating	age	sname	rating
28	yuppy	9	35.0	yuppy	9
31	lubber	8	55.5	lubber	8
44	guppy	5	35.0	guppy	5
58	rusty	10	35.0	rusty	10

The Projection Operation

Example 2: $\pi_{age}(S2)$

- The projection operator eliminates *duplicates*!
 - Note: real DBMSs typically do not eliminate duplicates unless explicitly asked for

Carnegie Mellon University Oatar

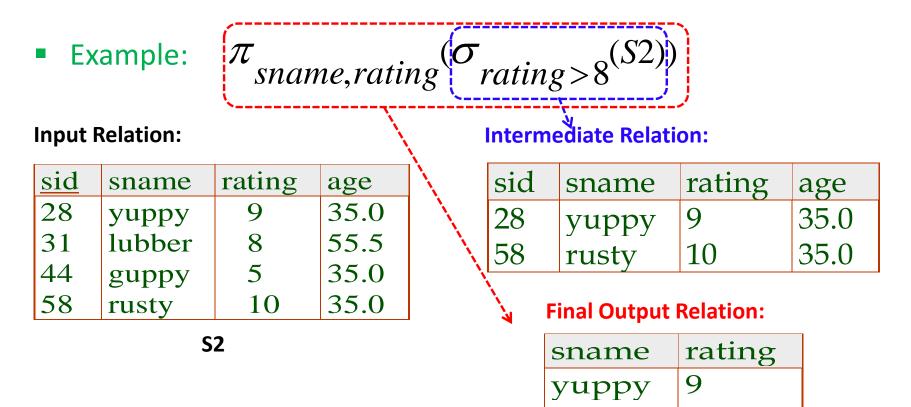
The Selection Operation

- Selection: $\sigma_{condition}$ (
 - Selects rows that satisfy the selection condition
 - The schema of the output relation is identical to the schema of the input relation
- Example:

$$\sigma_{rating > 8}^{(S2)}$$

Input Relation:

Output Relation:


sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

	sid	sname	rating	age
	28	yuppy	9	35.0
/	58	rusty	10	35.0

Operator Composition

The output relation can be the input for another relational algebra operation! (Operator composition)

10

rusty

The Union Operation

- Union: R U S
 - The two input relations must be union-compatible
 - Same number of fields
 - `Corresponding' fields have the same type
 - The output relation includes all tuples that occur "in either" R or S "or both"
 - The schema of the output relation is identical to the schema of R
- Example: $S1 \cup S2$

Input Relations:

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age	
28	yuppy	9	35.0	
31	lubber	8	55.5	
44	guppy	5	35.0	▐┻┓∕
58	rusty	10	35.0	ľ

S2

Output Relation:

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

The Intersection Operation

• Intersection: $R \cap S$

- The two input relations must be union-compatible
- The output relation includes all tuples that occur "in both" R and S
- The schema of the output relation is identical to the schema of R
- Example: $S1 \cap S2$

Input Relations:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age	
28	yuppy	9	35.0	
31	lubber	8	55.5	
44	guppy	5	35.0	
58	rusty	10	35.0	

S2

Output Relation:

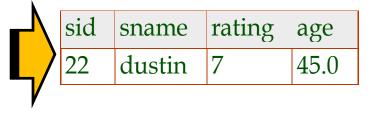
	sid	sname	rating	age
	31	lubber	8	55.5
/	58	rusty	10	35.0

S1

The Set-Difference Operation

• Set-Difference: R - S

- The two input relations must be union-compatible
- The output relation includes all tuples that occur in R "but not" in S
- The schema of the output relation is identical to the schema of R
- Example: S1–S2

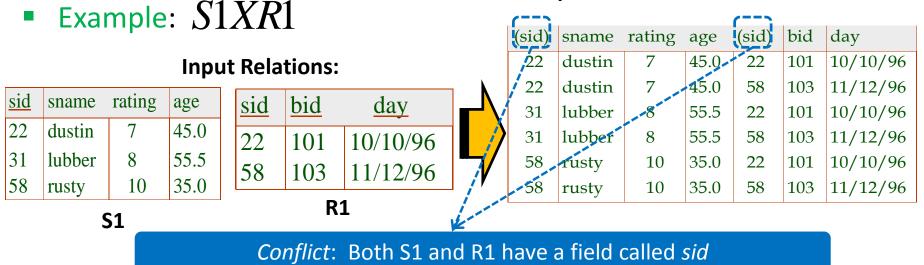

Input Relations:

Output	Relation :
--------	-------------------

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

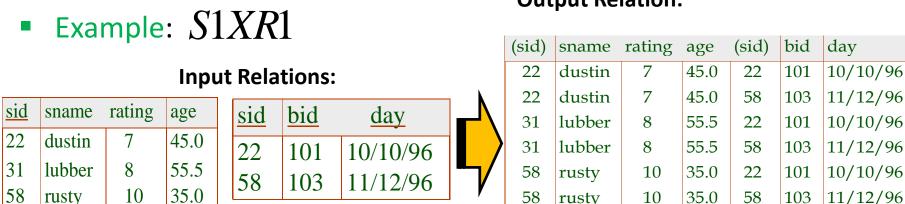
S2


S1

The Cross-Product and Renaming Operations

Cross Product: RXS

- Each row of R is paired with each row of S
- The schema of the output relation concatenates S1's and R1's schemas
- Conflict: R and S might have the same field name
- Solution: Rename fields using the "Renaming Operator"
- Renaming: $ho(R(\overline{F}), E)$


The Cross-Product and Renaming Operations

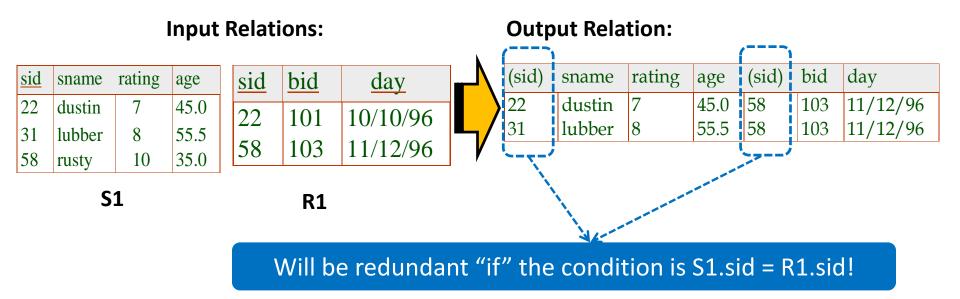
Cross Product: RXS

- Each row of R is paired with each row of S
- The schema of the output relation concatenates S1's and R1's schemas
- Conflict: R and S might have the same field name

R1

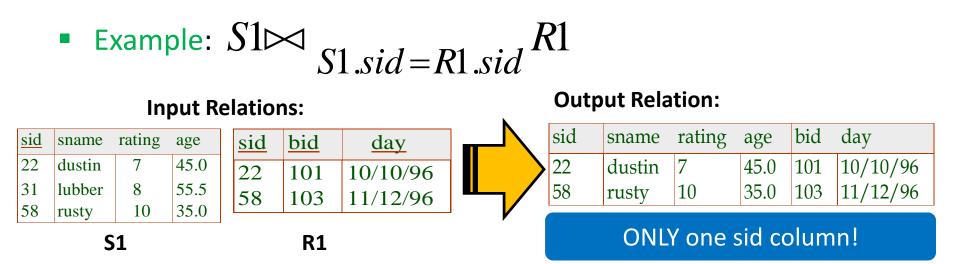
- Solution: Rename fields using the "Renaming Operator"
- Renaming: $ho(R(\overline{F}), E)$

Output Relation:


 $\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

S1

The Join Operation


- (Theta) Join : $R \bowtie_C S = \sigma_C(R \times S)$
 - The schema of the output relation is the same as that of cross-product
 - It usually includes fewer tuples than cross-product

• Example:
$$S1 \bowtie S1.sid < R1.sid R1$$

The Join Operation

- Equi-Join: $R \bowtie_{C} S = \sigma_{C}(R \times S)$
 - A special case of theta join where the condition c contains only equalities
 - The schema of the output relation is the same as that of cross-product, "but only one copy of the fields for which equality is specified"
- Natural Join: $R \bowtie S$
 - Equijoin on *"all"* common fields

The Join Operation

- Equi-Join: $R \bowtie_{c} S = \sigma_{c}(R \times S)$
 - A special case of theta join where the condition c contains only equalities
 - The schema of the output relation is the same as that of cross-product, "but only one copy of the fields for which equality is specified"
- Natural Join: $R \bowtie S$
 - Equijoin on *"all"* common fields

■ Example: *S*1 ⋈ *R*1 ≪

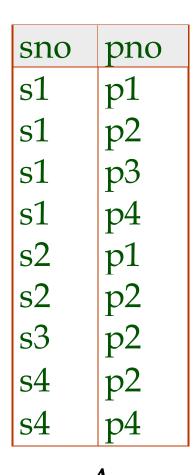
Input Relations:								Out	put Rela	ntion:			
sid	sname	rating	age	sid	bid	day	▏ <mark><mark>┎</mark>╍┙╲</mark>	sid	sname	rating	age	bid	day
22	dustin	7	45.0	22	101	10/10/96		22	dustin	7	45.0	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96		58	rusty	10	35.0	103	11/12/96
58	rusty	10	35.0	20	100	11/12/20							
S1					R1			In	this ca	ise, sai	me a	s eq	ui-join!

Natural Join

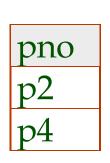
The Division Operation

• Division: $R \div S$

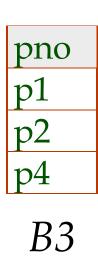
 Not supported as a primitive operator, but useful for expressing queries like:

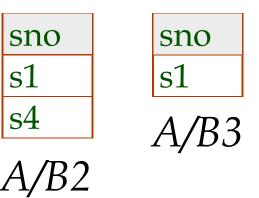

Find sailors who have reserved <u>all</u> boats

- Let A have 2 fields, x and y; B have only field y:
 - A/B contains all x tuples (sailors) such that for <u>every</u> y tuple (boat) in B, there is an xy tuple in A
 - Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, then x value is in A/B


• Formally: A/B =
$$\{\langle x \rangle \mid \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B\}$$

 In general, x and y can be any lists of fields; y is the list of fields in B, and x y is the list of fields in A


Examples of Divisions



*B*2

sno
s1
s2
s3
s4

A/B1

A

Expressing A/B Using Basic Operators

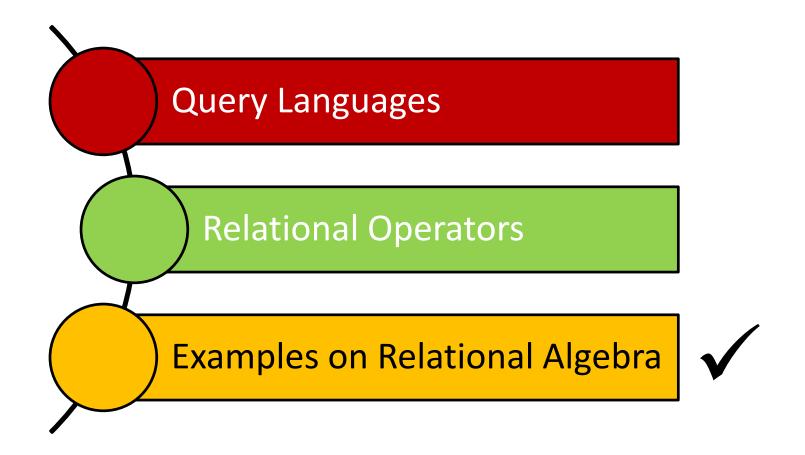
- Division can be derived from the fundamental operators
- Idea: For A/B, compute all x values that are not `disqualified' by some y value in B
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is "not" in A

Disqualified *x* values: $\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$

A/B:
$$\pi_{\chi}(A)$$
 – all disqualified tuples

Relational Algebra: Summary

- Operators (with notations):
 - 1. Selection (()): selects a subset of rows from a relation
 - 2. Projection (1): deletes unwanted columns from a relation
 - 3. Cross-product (χ): allows combining two relations
 - Set-difference (—): retains tuples which are in relation 1,
 "but not" in relation 2
 - Union (∪): retains tuples which are in "either" relation 1 or relation 2, "or in both"



Relational Algebra: Summary

- Operators (with notations):
 - 6. Intersection (\cap): retains tuples which are in relation 1 "and" in relation 2
 - 7. Join (▷<): allows combining two relations according to a specific condition (e.g., *theta, equi* and *natural* joins)
 - 8. Division (\div): generates the largest instance Q such that Q ×B \subseteq A when computing A/B
 - 9. Renaming (ρ): returns an instance of a new relation with some fields being potentially "renamed"

Outline

Q1: Find names of sailors who've reserved boat #103

Sid	Sname	Rating	Age	Sid	Bid	Day			
22	Dustin	7	45.0	22	101	10/10/98			
29	Brutus	1	33.0	22	102	10/10/98			
31	Lubber	8	55.5	22	103	10/8/98	Bid	Bname	Color
32	Andy	8	25.5	22	104	10/7/98	101	Interlake	Blue
58	Rusty	10	35.0	31	102	11/10/98	102	Interlake	Red
64	Horatio	7	35.0	31	103	11/6/98	103	Clipper	Green
71	Zorba	10	16.0	31	104	11/12/98	104	Marine	Red
74	Horatio	9	35.0	64	101	9/5/98	An Ir	nstance B1 o	of Boats
85	Art	3	25.5	64	102	9/8/98			
95	Bob	3	63.5	74	103	9/8/98			

An Instance S3 of Sailors

An Instance R2 of Reserves

Q1: Find names of sailors who've reserved boat #103

$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie \text{Sailors})$$

$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors)))$$

$$\rho(Temp1, \sigma_{bid=103}^{\text{OR:}} \text{Reserves})$$

$$\rho(Temp2, Temp1 \bowtie Sailors)$$

$$\pi_{sname}(Temp2)$$

Which one to choose?

Q2: Find names of sailors who've reserved a red boat

Sid	Sname	Rating	Age	Sid	Bid	Day			
22	Dustin	7	45.0	22	101	10/10/98			
29	Brutus	1	33.0	22	102	10/10/98			
31	Lubber	8	55.5	22	103	10/8/98	Bid	Bname	Color
32	Andy	8	25.5	22	104	10/7/98	101	Interlake	Blue
58	Rusty	10	35.0	31	102	11/10/98	102	Interlake	Red
64	Horatio	7	35.0	31	103	11/6/98	103	Clipper	Green
71	Zorba	10	16.0	31	104	11/12/98	104	Marine	Red
74	Horatio	9	35.0	64	101	9/5/98	An Ir	nstance B1 o	of Boats
85	Art	3	25.5	64	102	9/8/98			
95	Bob	3	63.5	74	103	9/8/98			

An Instance S3 of Sailors

An Instance R2 of Reserves

Q2: Find names of sailors who've reserved a red boat

 $\pi_{sname}((\sigma_{color='red'}Boats) \bowtie \text{Reserves} \bowtie Sailors)$

<u>OR:</u>

$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats) \bowtie \operatorname{Res}) \bowtie Sailors)$

A query optimizer can find the second one, given the first solution!

Q3: Find sailors who've reserved a red <u>or</u> a green boat

Sid	Sname	Rating	Age	Sid	Bid	Day			
22	Dustin	7	45.0	22	101	10/10/98			
29	Brutus	1	33.0	22	102	10/10/98			
31	Lubber	8	55.5	22	103	10/8/98	Bid	Bname	Color
32	Andy	8	25.5	22	104	10/7/98	101	Interlake	Blue
58	Rusty	10	35.0	31	102	11/10/98	102	Interlake	Red
64	Horatio	7	35.0	31	103	11/6/98	103	Clipper	Green
71	Zorba	10	16.0	31	104	11/12/98	104	Marine	Red
74	Horatio	9	35.0	64	101	9/5/98	An Ir	nstance B1 o	of Boats
85	Art	3	25.5	64	102	9/8/98			
95	Bob	3	63.5	74	103	9/8/98			

An Instance S3 of Sailors

An Instance R2 of Reserves

Q3: Find sailors who've reserved a red or a green boat

 ρ (Tempboats, ($\sigma_{color='red' \lor color='green'}$ Boats))

 π_{sname} (Tempboats \bowtie Reserves \bowtie Sailors)

Can we define Tempboats using union?

What happens if \lor is replaced by \land ?

Q4: Find sailors who've reserved a red <u>and</u> a green boat

Sid	Sname	Rating	Age	Sid	Bid	Day			
22	Dustin	7	45.0	22	101	10/10/98			
29	Brutus	1	33.0	22	102	10/10/98			
31	Lubber	8	55.5	22	103	10/8/98	Bid	Bname	Color
32	Andy	8	25.5	22	104	10/7/98	101	Interlake	Blue
58	Rusty	10	35.0	31	102	11/10/98	102	Interlake	Red
64	Horatio	7	35.0	31	103	11/6/98	103	Clipper	Green
71	Zorba	10	16.0	31	104	11/12/98	104	Marine	Red
74	Horatio	9	35.0	64	101	9/5/98	An Ir	nstance B1 o	of Boats
85	Art	3	25.5	64	102	9/8/98			
95	Bob	3	63.5	74	103	9/8/98			

An Instance S3 of Sailors

An Instance R2 of Reserves

Q4: Find sailors who've reserved a red <u>and</u> a green boat

 ρ (Tempred, $\pi_{sid}((\sigma_{color='red'}Boats) \bowtie \text{Reserves}))$

 ρ (Tempgreen, π_{sid} (($\sigma_{color = green}$, Boats) \bowtie Reserves))

 $\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$

Would the previous approach (i.e., using \cap instead of U) work?

Q5: Find the names of sailors who've reserved <u>all</u> boats

Sid	Sname	Rating	Age	Sid	Bid	Day			
22	Dustin	7	45.0	22	101	10/10/98			
29	Brutus	1	33.0	22	102	10/10/98			
31	Lubber	8	55.5	22	103	10/8/98	Bid	Bname	Color
32	Andy	8	25.5	22	104	10/7/98	101	Interlake	Blue
58	Rusty	10	35.0	31	102	11/10/98	102	Interlake	Red
64	Horatio	7	35.0	31	103	11/6/98	103	Clipper	Green
71	Zorba	10	16.0	31	104	11/12/98	104	Marine	Red
74	Horatio	9	35.0	64	101	9/5/98	An Ir	nstance B1 o	of Boats
85	Art	3	25.5	64	102	9/8/98			
95	Bob	3	63.5	74	103	9/8/98			

An Instance S3 of Sailors

An Instance R2 of Reserves

Q5: Find the names of sailors who've reserved <u>all</u> boats

$$\rho$$
 (Tempsids, ($\pi_{sid,bid}$ Reserves) / (π_{bid} Boats))

 π_{sname} (Tempsids \bowtie Sailors)

How can we find sailors who've reserved all 'Interlake' boats?

Summary

- The relational model has rigorously defined query languages that are simple and powerful
- Relational algebra is operational; useful as internal representation for query evaluation plans
- Several ways of expressing a given query; a query optimizer should choose the most efficient version

Next Class

Relational Calculus

