
Database Applications (15-415)

The Entity Relationship Model
Lecture 2, January 12, 2016

Mohammad Hammoud

Today…
 Last Session:

 Course overview and a brief introduction on databases and
database systems

 Today’s Session:

 Introduction on databases and database systems (Continue)

 Main steps involved in designing databases

 Constructs of the entity relationship (ER) model

 Integrity constrains that can be expressed in the ER model

 Announcements:

 The first Problem Solving Assignment (PS1) is now posted on the
course webpage. It is due on Jan 21st by midnight

 Thursday, Jan 14th is the first recitation

 A case study on the ER model will be solved together

Outline

A Primer on Databases

Database Design

ER Model: Constructs and Constraints



A Motivating Scenario

 Qatar Foundation (QF) has a large collection of data (say 500GB) on
employees, students, universities, research centers, etc.,

 This data is accessed concurrently by several people

 Queries on data must be answered quickly

 Changes made to the data by different users must be applied consistently

 Access to certain parts of data (e.g., salaries) must be restricted

 This data should survive system crashes/failures

Performance (Concurrency Control)

Performance (Response Time)

Correctness (Consistency)

Correctness (Security)

Correctness (Durability and Atomicity)

Managing Data using File Systems

 What about managing QF data using local file systems?
 Files of fixed-length and variable-length records as well as formats

 Main memory vs. disk

 Computer systems with 32-bit addressing vs. 64-bit addressing schemes

 Special programs (e.g., C++ and Java programs) for answering user questions

 Special measures to maintain atomicity

 Special measures to maintain consistency of data

 Special measures to maintain data isolation

 Special measures to offer software and hardware fault-tolerance

 Special measures to enforce security policies in which different users are
granted different permissions to access diverse subsets of data

This becomes tedious and inconvenient, especially at large-scale, with
evolving/new user queries and higher probability of failures!

Data Base Management Systems

 A special software is accordingly needed to make the preceding
tasks easier

 This software is known as Data Base Management System (DBMS)

 DBMSs provide automatic:
 Data independence

 Efficient data access

 Data integrity and security

 Data administration

 Concurrent accesses and crash recovery

 Reduced application development and tuning time

Some Definitions

 A database is a collection of data which describes one or many
real-world enterprises
 E.g., a university database might contain information about entities like

students and courses, and relationships like a student
enrollment in a course

 A DBMS is a software package designed to store and
manage databases
 E.g., DB2, Oracle, MS SQL Server, MySQL and Postgres

 A database system = (Big) Data + DBMS + Application Programs

Data Models

 The user of a DBMS is ultimately concerned with some real-world
enterprises (e.g., a University)

 The data to be stored and managed by a DBMS describes various
aspects of the enterprises
 E.g., The data in a university database describes students, faculty and

courses entities and the relationships among them

 A data model is a collection of high-level data description constructs
that hide many low-level storage details

 A widely used data model called the entity-relationship (ER) model
allows users to pictorially denote entities and the relationships
among them

The Relational Model

 The relational model of data is one of the most widely used
models today

 The central data description construct in the relational model
is the relation

 A relation is basically a table (or a set) with rows (or records or
tuples) and columns (or fields or attributes)

 Every relation has a schema, which describes the columns
of a relation

 Conditions that records in a relation must satisfy can be specified
 These are referred to as integrity constraints

The Relational Model: An Example

 Let us consider the student entity in a university database

sid name login dob gpa

512412 Khaled khaled@qatar.cmu.edu 18-9-1995 3.5

512311 Jones jones@qatar.cmu.edu 1-12-1994 3.2

512111 Maria maria@qatar.cmu.edu 3-8-1995 3.85

An instance of a Students relation

An attribute, field or column

A record, tuple
or row

Students(sid: string, name: string, login: string, dob: string, gpa: real)

Students Schema

Integrity Constraint: Every student has a unique sid value

Levels of Abstraction

 The data in a DBMS is described at three levels of abstraction,
the conceptual (or logical), physical and external schemas

 The conceptual schema describes
data in terms of a specific data model
(e.g., the relational model of data)

 The physical schema specifies how data
described in the conceptual schema are
stored on secondary storage devices

 The external schema (or views) allow data
access to be customized at the level of individual users or group of
users (views can be 1 or many)

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Disk

Views

 A view is conceptually a relation

 Records in a view are computed as needed and usually not
stored in a DBMS

 Example: University Database

Conceptual Schema Physical Schema External Schema (View)

• Students(sid: string, name:
string, login: string, dob: string,
gpa:real)

• Courses(cid: string,
cname:string, credits:integer)

• Enrolled(sid:string, cid:string,
grade:string)

• Relations stored as heap files
• Index on first column of

Students

Students can be allowed to find
out course enrollments:
• Course_info(cid: string,

enrollment: integer)
Can be computed from the relations in
the conceptual schema (so as to avoid
data redundancy and inconsistency).

Iterating: Data Independence

 One of the most important benefits of using a DBMS is
data independence

 With data independence, application programs are insulated
from how data are structured and stored

 Data independence entails two properties:
 Logical data independence: users are shielded from changes in the

conceptual schema (e.g., add/drop a column in a table)

 Physical data independence: users are shielded from changes in the
physical schema (e.g., add index or change record order)

Queries in a DBMS

 The ease with which information can be queried from a database
determines its value to users

 A DBMS provides a specialized language, called the query language,
in which queries can be posed

 The relational model supports powerful query languages

 Relational calculus: a formal language based on mathematical logic

 Relational algebra: a formal language based on a collection of
operators (e.g., selection and projection) for manipulating relations

 Structured Query Language (SQL):

 Builds upon relational calculus and algebra

 Allows creating, manipulating and querying relational databases

 Can be embedded within a host language (e.g., Java)

Concurrent Execution and Transactions

 An important task of a DBMS is to schedule concurrent accesses to
data so as to improve performance

 When several users access a database concurrently, the DBMS must
order their requests carefully to avoid conflicts

 E.g., A check might be cleared while account balance is being computed!

 DBMS ensures that conflicts do not arise via using a locking protocol

 Shared vs. Exclusive locks

T1 T2

R(A)
W(A)

R(C)
W(C)

R(B)
W(B)

An atomic sequence of database actions (read/writes)
is referred to as “transaction”

Ensuring Atomicity

 Transactions can be interrupted before running to completion for a
variety of reasons (e.g., due to a system crash)

 DBMS ensures atomicity (all-or-nothing property) even if a crash
occurs in the middle of a transaction

 This is achieved via maintaining a log (i.e., history) of all writes
to the database

 Before a change is made to the database, the corresponding log entry is
forced to a safe location (this protocol is called Write-Ahead Log or WAL)

 After a crash, the effects of partially executed transactions are undone
using the log

The Architecture of a Relational DBMS
Web Forms Application Front Ends SQL Interface

Plan Executer Parser

Operator Evaluator Optimizer

Query
Evaluation
Engine

Files and Access Methods

Buffer Manager

Disk Space Manager

Transaction
Manager

Lock
Manager

Recovery
Manager

Concurrency Control

System CatalogIndex Files
Data Files

SQL Commands

DBMS

Database

People Who Work With Databases
 There are five classes of people associated with databases:

1. End users
 Store and use data in DBMSs

 Usually not computer professionals

2. Application programmers
 Develop applications that facilitate the usage of DBMSs for end-users

 Computer professionals who know how to leverage host languages, query
languages and DBMSs altogether

3. Database Administrators (DBAs)
 Design the conceptual and physical schemas

 Ensure security and authorization

 Ensure data availability and recovery from failures

 Perform database tuning

4. Implementers
 Build DBMS software for vendors like IBM and Oracle

 Computer professionals who know how to build DBMS internals

5. Researchers
 Innovate new ideas which address evolving and new challenges/problems

The Architecture of a Relational DBMS
Web Forms Application Front Ends SQL Interface

Plan Executer Parser

Operator Evaluator Optimizer

Query
Evaluation
Engine

Files and Access Methods

Buffer Manager

Disk Space Manager

Transaction
Manager

Lock
Manager

Recovery
Manager

Concurrency Control

System CatalogIndex Files
Data Files

SQL Commands

DBMS

Database

End Users (e.g., university staff, travel agents, etc.)
Application

Programmers & DBAs

Implementers and Researchers

Summary
 We live in a world of data

 The explosion of data is occurring along the 3Vs dimensions

 DBMSs are needed for ensuring logical and physical data
independence and ACID properties, among others

 The data in a DBMS is described at three levels of abstraction

 A DBMS typically has a layered architecture

Summary
 Studying DBMSs is one of the broadest and most exciting

areas in computer science!

 This course provides an in-depth treatment of DBMSs with an
emphasis on how to design, create, refine, use and build
DBMSs and real-world enterprise databases

 Various classes of people who work with databases hold
responsible jobs and are well-paid!

Outline

A Primer on Databases

Database Design

ER Model: Constructs and Constraints



Database Design

 Requirements Analysis
 Users needs

 Conceptual Design
 A high-level description of the data (e.g., using the ER model)

 Logical Design
 The conversion of an ER design into a relational database schema

 Schema Refinement
 Normalization (i.e., restructuring tables to ensure some

desirable properties)

 Physical Design
 Building indexes and clustering some tables

 Security Design
 Access controls

Outline

A Primer on Databases

Database Design

ER Model: Constructs and Constraints 

Entities and Entity Sets

 Entity:

 A real-world object distinguishable from other objects in
an enterprise (e.g., University, Students and Faculty)

 Described using a set of attributes

 Entity set:

 A collection of similar entities (e.g., all employees)

 All entities in an entity set have the same set of attributes
(until we consider ISA hierarchies, anyway!)

 Each entity set has a key

 Each attribute has a domain

Tools and An ER Diagram

Employees

ssn
name

lot

Entities (‘Entity Sets’)

Attributes

“ssn” is the
primary key,
hence, underlined

Relationship and Relationship Sets

 Relationship:

 Association among two or more entities (e.g., Mohammad
is teaching 15-415)

 Described using a set of attributes

 Relationship set:

 Collection of similar relationships

 Same entity set could participate in different relationship
sets, or in different “roles” in the same set

More Tools and ER Diagrams

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Employees

subor-

dinate

super-

visor

ssn

Relationships (‘rel. sets’)

and mapping constraints

N M

P

A Self-RelationshipA Binary Relationship

Ternary Relationships

 Suppose that departments have offices at different locations and
we want to record the locations at which each employee works

 Consequently, we must record an association between an
employee, a department and a location

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Locationsaddress capacity

This is referred to as a “Ternary Relationship” (vs. Self & Binary Relationships)

Key Constraints

 Consider the “Employees” and “Departments” entity sets with a

“Manages” relationship set

 An employee can work in many departments

 A department can have many employees

 Each department can have at most one manager

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Key constraints are
denoted by thin arrows

This restriction is an example of a “key constraint”

Cardinalities

Many-to-ManyOne-to-One One-to-Many Many-to-One

1 1

1 N

N M

 Entities can be related to one another as “one-to-one”, “one-to-
many” and “many-to-many”

 This is said to be the cardinality of a given entity in relation to another

Cardinalities: Examples

1 1

1 N

N M

COUNTRY CAPITAL

PERSON

STUDENT SECTION

has

CARowns

takes

Cardinalities: Examples

PERSON

STUDENT SECTION

CARowns

takes

Book’s notation:

COUNTRY has CAPITAL

Cardinalities: Examples

1 1

1 N

N M

PERSON

STUDENT SECTION

CARowns

takes

Book’s notation

vs

1 to N notation

CAPITALCOUNTRY has

A Working Example

 Requirements: Students take courses offered
by instructors; a course may have multiple
sections; one instructor per section

 How to start?

 Nouns -> entity sets

 Verbs -> relationship sets

STUDENT

name

ssn

...

INSTRUCTOR
issn

Primary key =

unique identifier 

underline

STUDENT

name

ssn

...

COURSE

c-id

c-name

But: sections of a course (with

different instructors)?

INSTRUCTOR
issn

COURSE

c-id

INSTRUCTORissn

STUDENT

ssn

SECTIONs-id

But: s-id is not

unique... (see

later)

COURSE

c-id

INSTRUCTORissn

STUDENT

ssn

SECTIONs-id

Q: how to

record that

students take

courses?

COURSE

c-id

INSTRUCTORissn

STUDENT

ssn

SECTIONs-id

takes

N

M

COURSE

c-id

INSTRUCTOR

STUDENT

SECTIONs-id

takes

N

M

N

1

teaches

COURSE

c-id

INSTRUCTOR

STUDENT

SECTIONs-id

takes

N

M

N

1

has
N 1

teaches

Participation Constraints
 Consider again the “Employees” and “Departments” entity sets as well as the

“Manages” relationship set

 Should every department have a manager?

 If so, this is a participation constraint

 Such a constraint entails that every Departments entity must appear in an
instance of the Manages relationship

 The participation of Departments in Manages is said to be total (vs. partial)

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_InTotal participation is
denoted by a thick line

Total participation +
key constraint are
denoted by a thick arrow

Total vs. Partial Participations

PERSON

STUDENT SECTION

CARowns

takes

Total, Total

??

??

COUNTRY has CAPITAL

Total vs. Partial Participations

PERSON

STUDENT SECTION

CARowns

takes

Total, Total

??

Partial, Total

COUNTRY has CAPITAL

Total vs. Partial Participations

PERSON

STUDENT SECTION

CARowns

takes

Total, Total

Partial, Total

Partial, Total

COUNTRY has CAPITAL

Weak Entities

 A weak entity can be identified uniquely only by considering
the primary key of another (owner) entity

 Owner entity set and weak entity set must participate in a one-
to-many relationship set (one owner, many weak entities)

 Weak entity set must have total participation in this
identifying relationship set

 The set of attributes of a weak entity set that uniquely
identify a weak entity for a given owner entity is called
partial key

Weak Entities: An Example

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Weak entities and identifying relationships
are drawn using thick lines

Partial keys are underlined
using broken lines

 “Dependents” has no unique key of its own
 “Dependents” is a weak entity with partial key “pname”

 “Policy” is an identifying relationship set

 “pname” + “ssn” are the primary key of “Dependents”

ISA (`is a’) Hierarchies

 Entities in an entity set can sometimes be classified into subclasses
(this is “kind of similar” to OOP languages)

 If we declare B ISA A, every B entity is also considered to be an A entity

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

“Employees”
is specialized
into subclasses

“Hourly_Emps”
and
“Contract_Emps”
are generalized
by “Employees”

Overlap and Covering Constraints

 Overlap constraints

 Can an entity belong to
both ‘B’ and ‘C’?

 Covering constraints

 Can an ‘A’ entity belong
to neither ‘B’ nor ‘C’?

A

B C

Overlap Constraints: Examples

 Overlap constraints

 Can John be in Hourly_Emps and
Contract_Emps? Intuitively, no

 Can John be in Contract_Emps
and in Senior_Emps?
Intuitively, yes
“Contract_Emps OVERLAPS Senior_Emps”

A

B C

Covering Constraints: Examples

 Covering constraints
 Does every one in Employees

belong to a one of its subclasses?
Intuitively, no

 Does every Motor_Vehicles
entity have to be either a
Motorboats entity or
a Cars entity? Intuitively, yes
“Motorboats AND Cars COVER Motor_Vehicles”

A

B C

More Details on ISA Hierarchies

 Attributes are inherited (i.e., if B ISA A, the attributes
defined for a B entity are the attributes for A plus B)

 We can have many levels of an ISA hierarchy

 Reasons for using ISA:
 To add descriptive attributes specific to a subclass

 To identify entities that participate in a relationship

Aggregation

 Aggregation allows indicating that a relationship set (identified through
a dashed box) participates in another relationship set

budgetdidpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

Next Class

Continue the ER Model and
Start with the relational Model

