
Database Applications (15-415)

The Relational Model
Lecture 3, January 17, 2016

Mohammad Hammoud

Today…
 Last Session:

 The entity relationship (ER) model

 Today’s Session:

 ER model (Cont’d): conceptual design choices

 The relational model

 Basic Constructs of the relational model

 Basic SQL

 Announcement:

 PS1 is due on Thursday, Jan 21, 2016 by midnight

Outline

ER Model: Conceptual Design Choices
and Summary

The Relational Model: Introduction

The Relational Model: Basic SQL

Conceptual Design Choices

 Should a concept be modeled as an entity or an attribute?

 Should a concept be modeled as an entity or a relationship?

 How should we identify relationships?

 Binary or ternary?

 Ternary or aggregation?

 Constraints in the ER Model:

 A lot of data semantics can (and should) be captured

 But some constraints cannot be captured in ER diagrams

Entity vs. Attribute

 Should address be an attribute of Employees or an
entity (connected to Employees by a relationship)?

 This depends upon the use we want to make of
address information, and the semantics of the data

 If we have several addresses per an employee, address
must be an entity (since attributes cannot be set-valued)

 If the structure (city, street, etc.) is important (e.g., we want
to retrieve employees in a given city), address must be
modeled as an entity

Entity vs. Attribute (Cont’d)
 Consider the following ER diagram:

 A problem: Works_In4 does not allow an employee to work in a
department for two or more periods

 Solution: introduce “Duration” as a new entity set

name

Employees

ssn lot

Works_In4

from to

dname

budgetdid

Departments

dname

budgetdid
name

Departments

ssn lot

Employees Works_In4

Durationfrom to

Entity vs. Relationship
 Consider the following ER diagram whereby a manager gets a separate

discretionary budget for each department

 What if a manager gets
a discretionary budget
that covers all
managed departments?

 Redundant data

 Misleading

Manages2

name dname

budgetdid

Employees Departments

ssn lot

dbudgetsince

dname

budgetdid

DepartmentsManages2

Employees

name
ssn lot

since

Managers dbudget

ISA

This fixes the
problem!

If each policy is
owned by just 1
employee: Policies

policyid cost

agepname

DependentsCovers

name

Employees

ssn lot

Binary vs. Ternary Relationships

If each policy is
owned by just 1
employee: Policies

policyid cost

agepname

DependentsCovers

name

Employees

ssn lot

Binary vs. Ternary Relationships

Bad design!

Key constraint on Policies would mean policy can only cover 1 dependent!

If each policy is
owned by just 1
employee:

Binary vs. Ternary Relationships

Better design!

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Binary vs. Ternary Relationships

 But sometimes ternary relationships cannot
be replaced by a set of binary relationships

Binary vs. Ternary Relationships

 But sometimes ternary relationships cannot
be replaced by a set of binary relationships

Suppliers

qty

DepartmentsContractParts

Suppliers

Departments

deals-with

Parts

can-supply

VS.

Binary vs. Ternary Relationships

 But sometimes ternary relationships cannot
be replaced by a set of binary relationships

Suppliers

qty

DepartmentsContractParts

Suppliers

Departments

deals-with

Parts

can-supply

VS.

Binary vs. Ternary Relationships

 But sometimes ternary relationships cannot
be replaced by a set of binary relationships

Suppliers

qty

DepartmentsContractParts

Suppliers

Departments

deals-with

Parts

can-supply

VS.

Why is it bad?

Binary vs. Ternary Relationships

 But sometimes ternary relationships cannot
be replaced by a set of binary relationships

Suppliers

Departments

deals-with

Parts

can-supply

VS.

Why is it bad?

 S “can-supply” P,
D “needs” P, and D
“deals-with” S do not
imply that D
has agreed to buy P
from S

 How do we record
qty?

Aggregation

 Aggregation allows indicating that a relationship set (identified through
a dashed box) participates in another relationship set

budgetdidpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

Ternary vs. Aggregation Relationships

 When to use aggregation?

 If we want to attach a
relationship to a relationship

 What if we do not want to
record the until attribute of
Monitors relationship?

budgetdidpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

Ternary vs. Aggregation Relationships
(Cont’d)

 We might reasonably use a ternary relationship instead
of an aggregation

budgetdidpid

started_on

pbudget

dname

DepartmentsProjects Sponsors2

Employees

lot
name

ssn

What if each sponsorship (of a project by a department) is to be monitored by at
most one employee?

ER Model: Summary

 Conceptual design follows requirements analysis

 Yields a high-level description of data to be stored

 The ER model is popular for conceptual design

 Its constructs are expressive, close to the way
people think about their applications

 The basic constructs of the ER model are:

 Entities, relationships, and attributes (of entities
and relationships)

ER Model: Summary

 Some additional constructs of the ER model are:

 Weak entities, ISA hierarchies, and aggregation

 Several kinds of integrity constraints can be
expressed in the ER model

 Key constraints, participation constraints, and
overlap/covering constraints for ISA hierarchies

 Note: there are many variations on the ER model

ER Model: Summary
 ER design is subjective

 There are often many ways to model a given scenario!

 Analyzing alternatives can be tricky, especially for a
large enterprise

 Common choices include:
 Entity vs. attribute

 Entity vs. relationship

 Binary or n-ary relationship (e.g., ternary)

 Whether or not to use ISA hierarchies

 Whether or not to use aggregation

Outline

ER Model: Conceptual Design Choices
and Summary

The Relational Model: Introduction

The Relational Model: Basic SQL

Why Studying the Relational Model?

 Most widely used model

 Vendors: IBM/Informix, Microsoft, Oracle, Sybase, etc.

 “Legacy systems” in older models

 E.g., IBM’s IMS

 Object-Oriented concepts have merged into

 An object-relational model

 Informix->IBM DB2, Oracle 8i

What is the Relational Model?

 The relational model adopts a “tabular” representation

 A database is a collection of one or more relations

 Each relation is a table with rows and columns

 What is unique about the relational model as opposed
to older data models?

 Its simple data representation

 Ease with which complex queries can be expressed

Basic Constructs

 The main construct in the relational model is the relation

 A relation consists of:

1. A schema which includes:

 The relation’s name

 The name of each column

 The domain of each column

2. An instance which is a set of tuples

 Each tuple has the same number of columns as the
relation schema

The Domain Constraints

 A relation schema specifies the domain of each column which
entails domain constraints

 A domain constraint specifies a condition by which each
instance of a relation should satisfy

 The values that appear in a column must be drawn from the
domain associated with that column

 Who defines a domain constraint?

 DBA

 Who enforces a domain constraint?

 DBMS

More Details on the Relational Model

 What is the relational database schema (not the relation schema)?
 A collection of schemas for the relations in the database

 What is the instance of a relational database (not the instance
of a relation)?
 A collection of relation instances

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

Degree (or arity) = # of fields

Cardinality =
of tuples

An instance of the “Students” relation

Outline

ER Model: Conceptual Design Choices
and Summary

The Relational Model: Introduction

The Relational Model: Basic SQL

 SQL (a.k.a. “Sequel”) stands for Structured Query Language

 SQL was developed by IBM (system R) in the 1970s

 There is a need for a standard since SQL is used by
many vendors

 Standards:
 SQL-86
 SQL-89 (minor revision)
 SQL-92 (major revision)
 SQL-99 (major extensions)
 SQL-2003 (minor revision)
 SQL-2011

SQL - A Language for Relational DBs

 The SQL language has two main aspects (there are other
aspects which we discuss next week)
 Data Definition Language (DDL)

 Allows creating, modifying, and deleting relations
and views

 Allows specifying constraints

 Allows administering users, security, etc.

 Data Manipulation Language (DML)

 Allows posing queries to find tuples that satisfy criteria

 Allows adding, modifying, and removing tuples

DDL and DML

 S1 can be used to create the “Students” relation

 S2 can be used to create the “Enrolled” relation

Creating Relations in SQL

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,

gpa: REAL)

CREATE TABLE Enrolled
(sid: CHAR(20),
cid: CHAR(20),
grade: CHAR(2))

The DBMS enforces domain constraints whenever tuples are added or modified

S1

S2

Adding and Deleting Tuples

 We can insert a single tuple to the “Students” relation using:

INSERT INTO Students (sid, name, login, age, gpa)

VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

 We can delete all tuples from the “Students” relation
which satisfy some condition (e.g., name = Smith):

DELETE
FROM Students S

WHERE S.name = ‘Smith’

Powerful variants of these commands are available; more next week!

Querying a Relation

 How can we find all 18-year old students?

 How can we find just names and logins?

SELECT *

FROM Students S

WHERE S.age=18

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

SELECT S.name, S.login

FROM Students S

WHERE S.age=18

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

Querying Multiple Relations
 What does the following query compute assuming S and E?

SELECT S.name, E.cid

FROM Students S, Enrolled E

WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid

Smith Topology112

sid cid grade

53831 Carnatic101 C

53831 Reggae203 B

53650 Topology112 A

53666 History105 B

We get:

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

S E

Destroying and Altering Relations

 How to destroy the relation “Students”?

DROP TABLE Students

 How to alter the schema of “Students” in order
to add a new field?

ALTER TABLE Students

ADD COLUMN firstYear: integer

The schema information and the tuples are deleted

Every tuple in the current instance is extended with a null value in the
new field!

Integrity Constraints (ICs)

 An IC is a condition that must be true for any instance
of the database (e.g., domain constraints)
 ICs are specified when schemas are defined
 ICs are checked when relations are modified

 A legal instance of a relation is one that satisfies all
specified ICs
 DBMS should not allow illegal instances

 If the DBMS checks ICs, stored data is more faithful to
real-world meaning
 Avoids data entry errors, too!

 Keys help associate tuples in different relations

 Keys are one form of integrity constraints (ICs)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

Keys

 Keys help associate tuples in different relations

 Keys are one form of integrity constraints (ICs)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

PRIMARY KeyFOREIGN Key

Keys

Enrolled
Students

 A set of fields is a superkey if:
 No two distinct tuples can have same values in all key fields

 A set of fields is a primary key for a relation if:
 It is a minimal superkey

 What if there is more than one key for a relation?
 One of the keys is chosen (by DBA) to be the primary key
 Other keys are called candidate keys

 Examples:
 sid is a key for Students (what about name?)
 The set {sid, name} is a superkey (or a set of fields that contains a key)

Superkey, Primary and Candidate Keys

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

Q: What does this mean?

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

“A student can take only one course, and no two students in a course receive the
same grade”

Foreign Keys and Referential Integrity

 A foreign key is a set of fields referring to a tuple
in another relation

 It must correspond to the primary key of the
other relation

 It acts like a `logical pointer’

 If all foreign key constraints are enforced,
referential integrity is said to be achieved
(i.e., no dangling references)

Foreign Keys in SQL

 Example: Only existing students may enroll for
courses

 sid is a foreign key referring to Students

 How can we write this in SQL?

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

CREATE TABLE Enrolled
(sid CHAR(20),cid CHAR(20),grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

 Example: Only existing students may enroll for
courses

Enrolled
Students

Foreign Keys in SQL

Enforcing Referential Integrity

 What should be done if an “Enrolled” tuple with a non-
existent student id is inserted? (Reject it!)

 What should be done if a “Students” tuple is deleted?
 Disallow its deletion

 Delete all Enrolled tuples that refer to it

 Set sid in Enrolled tuples that refer to it to a default sid

 Set sid in Enrolled tuples that refer to it to a special value
null, denoting `unknown’ or `inapplicable’

 What if a “Students” tuple is updated?

Referential Integrity in SQL

 SQL/92 and SQL:1999 support
all 4 options on deletes
and updates

 Default is NO ACTION (i.e.,
delete/update is
rejected)

 CASCADE (also delete all
tuples that refer to the
deleted tuple)

 SET NULL / SET DEFAULT (sets
foreign key value of
referencing tuple)

CREATE TABLE Enrolled

(sid CHAR(20),

cid CHAR(20),
grade CHAR(2),

PRIMARY KEY (sid,cid),

FOREIGN KEY (sid)

REFERENCES Students

ON DELETE CASCADE
ON UPDATE SET DEFAULT)

What does this mean?

Where do ICs Come From?

 ICs are based upon the semantics of the real-world
enterprise that is being described in the
database relations

 We can check a database instance to see if an IC is
violated, but we can NEVER infer that an IC is true by
looking at an instance
 An IC is a statement about all possible instances!
 From the “Students” relation, we know name is not a key,

but the assertion that sid is a key is given to us

 Key and foreign key ICs are the most common; more
general ICs are supported too

Views
 A view is a table whose rows are not explicitly stored but

computed as needed

CREATE VIEW YoungActiveStudents (name, grade)

AS SELECT S.name, E.grade

FROM Students S, Enrolled E

WHERE S.sid = E.sid and S.age<21

 Views can be queried
 Querying YoungActiveStudents would necessitate computing it first then

applying the query on the result as being like any other relation

 Views can be dropped using the DROP VIEW command
 How to handle DROP TABLE if there’s a view on the table?

 DROP TABLE command has options to let the user specify this

Views and Security
 Views can be used to present necessary information, while

hiding details in underlying relation(s)

 If the schema of an old relation is changed, a view can be defined
to represent the old schema

 This allows applications to transparently assume the old schema

 Views can be defined to give a group of users access to just
the information they are allowed to see

 E.g., we can define a view that allows students to see other
students’ names and ages, but not GPAs (also students can be
prevented from accessing the underlying “Students” relation)

Views and Security
 Views can be used to present necessary information, while

hiding details in underlying relation(s)

 If the schema of an old relation is changed, a view can be defined
to represent the old schema

 This allows applications to transparently assume the old schema

 Views can be defined to give a group of users access to just
the information they are allowed to see

 E.g., we can define a view that allows students to see other
students’ names and ages, but not GPAs (also students can be
prevented from accessing the underlying “Students” relation)

Logical Data Independence!

Views and Security
 Views can be used to present necessary information, while

hiding details in underlying relation(s)

 If the schema of an old relation is changed, a view can be defined
to represent the old schema

 This allows applications to transparently assume the old schema

 Views can be defined to give a group of users access to just
the information they are allowed to see

 E.g., we can define a view that allows students to see other
students’ names and ages, but not GPAs (also students can be
prevented from accessing the underlying “Students” relation)

Logical Data Independence!

Security!

Next Class

The Relational Model (Cont’d)
and Relational Algebra

