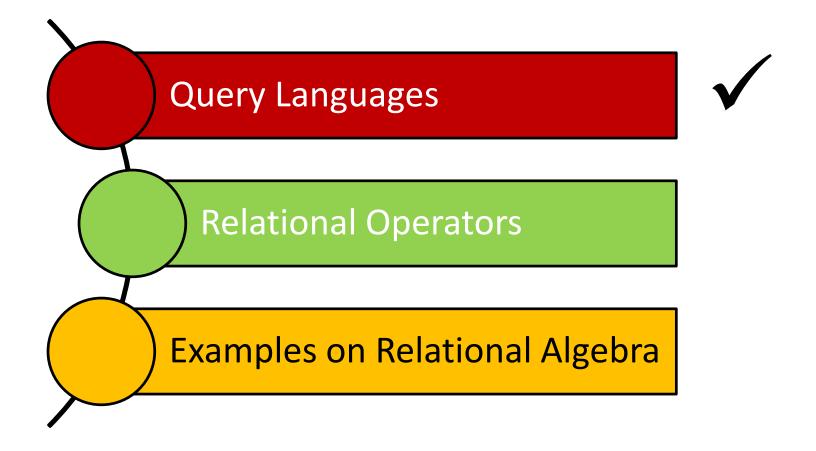
Database Applications (15-415)


Relational Algebra Lecture 5, January 24, 2016

Mohammad Hammoud

Today...

- Last Session:
 - The relational model
- Today's Session:
 - Relational algebra
 - Relational query languages (in general)
 - Relational operators
 - Few examples
- Announcements:
 - PS2 will be posted on Tuesday, Jan 26th
 - PS1 grades will be out on Tuesday, Jan 26th
 - Your Postgres DB VMs will be ready by Thursday, Jan 28th. We will use them during the upcoming recitation.

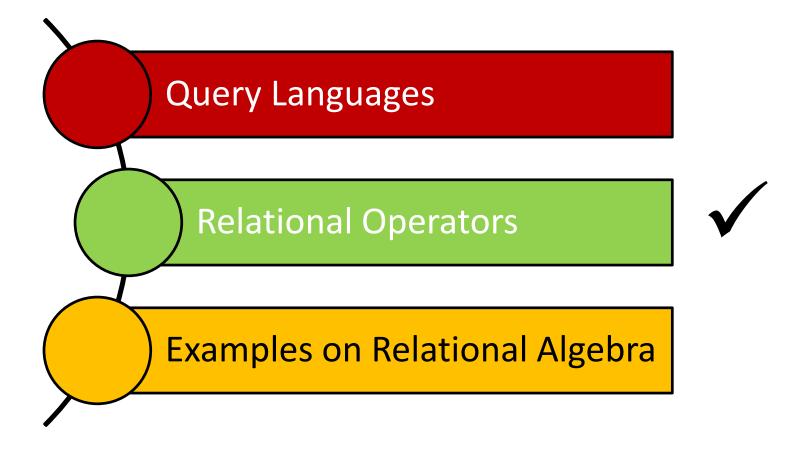
Outline

Relational Query Languages

- Query languages (QLs) allow manipulating and retrieving data from databases
- The relational model supports simple and powerful QLs:
 - Strong formal foundation based on logic
 - High amenability for effective optimizations

- Query Languages != programming languages!
 - QLs are not expected to be "Turing complete"
 - QLs are not intended to be used for complex calculations
 - QLs support easy and efficient access to large datasets

Formal Relational Query Languages


- There are two mathematical Query Languages which form the basis for commercial languages (e.g. SQL)
 - Relational Algebra
 - Queries are composed of operators
 - Each query describes a step-by-step procedure for computing the desired answer
 - Very useful for representing execution plans
 - Relational Calculus
 - Queries are subsets of first-order logic
 - Queries describe desired answers without specifying how they will be computed
 - A type of non-procedural (or declarative) formal query language

Formal Relational Query Languages

- There are two mathematical Query Languages which form the basis for commercial languages (e.g. SQL)
 - Relational Algebra
 - Queries are composed of operators
 - Each query describThisssession's topicdure for computing the desired answer
 - Very useful for representing execution plans
 - Relational Calculus
 - Queries are subsets of first-order logic
 - Queries dNext session's topic (very briefly) g how they will be computed
 - A type of non-procedural (or declarative) formal query language

Outline

Relational Algebra

- Operators (with notations):
 - 1. Selection ()
 - 2. Projection (1)
 - 3. Cross-product (⅓)
 - 4. Set-difference (—)
 - 5. Union (U)
 - 6. Intersection (\cap)
 - 7. Join (🖂)
 - 8. Division (\div)
 - 9. Renaming $(oldsymbol{
 ho})$
- Each operation returns a relation, hence, operations can be composed! (i.e., Algebra is "closed")

Relational Algebra

Operators (with notations):

```
1.
2.
     Cross-pBasic
3.
4.
5.
6.
7.
      Additional, yet
8.
    extremely useful!
9.
```

 Each operation returns a relation, hence, operations can be composed! (i.e., Algebra is "closed")

The Projection Operatation

- Projection: $\pi_{att-list}(R)$
 - "Project out" attributes that are NOT in att-list
 - The schema of the output relation contains ONLY the fields in att-list,
 with the same names that they had in the input relation
- Example 1: $\pi_{sname,rating}(S2)$

Input Relation:

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

The Projection Operation

• Example 2: $\pi_{age}(S2)$

Input Relation:

sid	sname	rating	age		age
28	yuppy	9	35.0		uge
31	lubber	8	55.5		3 5.0
44	guppy	5	35.0		
58	rusty	10	35.0		55.5
	S	2	`/	-	

- The projection operator eliminates duplicates!
 - Note: real DBMSs typically do not eliminate duplicates unless explicitly asked for

The Selection Operation

- lacksquare Selection: $oldsymbol{\sigma}_{condition}$
 - Selects rows that satisfy the selection *condition*
 - The schema of the output relation is identical to the schema of the input relation

Example:
$$\sigma_{rating>8}(S2)$$

Input Relation:

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

Operator Composition

 The output relation can be the input for another relational algebra operation! (Operator composition)

Example:

 $\pi_{sname,rating}($

 $\sigma_{rating>8}^{(S)}$

Input Relation:

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Intermediate Relation:

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

Final Output Relation:

sname	rating
yuppy	9
rusty	10

S2

The Union Operation

- lacktriangle Union: lacktriangle lacktriangle Union:
 - The two input relations must be union-compatible
 - Same number of fields
 - Corresponding' fields have the same type
 - The output relation includes all tuples that occur "in either" R or S "or both"
 - The schema of the output relation is identical to the schema of R
- Example: $S1 \cup S2$

Input Relations:

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

	sid	sname	rating	age
	22	dustin	7	45.0
	31	lubber	8	55.5
,	58	rusty	10	35.0
	44	guppy	5	35.0
	28	vuppy	9	35.0

The Intersection Operation

- Intersection: $R \cap S$
 - The two input relations must be union-compatible
 - The output relation includes all tuples that occur "in both" R and S
 - The schema of the output relation is identical to the schema of R
- Example: $S1 \cap S2$

Input Relations:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

The Set-Difference Operation

- Set-Difference: R-S
 - The two input relations must be union-compatible
 - The output relation includes all tuples that occur in R "but not" in S
 - The schema of the output relation is identical to the schema of R
- Example: S1-S2

Input Relations:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

The Cross-Product and Renaming Operations

- Cross Product: RXS
 - Each row of R is paired with each row of S
 - The schema of the output relation concatenates S1's and R1's schemas
 - Conflict: R and S might have the same field name
 - Solution: Rename fields using the "Renaming Operator"
 - Renaming: $\rho(R(\overline{F}), E)$

• Example: S1XR1

Input Relations:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

sid	<u>bid</u>	<u>day</u>		
22	101	10/10/96		
58	103	11/12/96		
R1				

	(:				(
	(sid)	sname	rating	age	(sid)	bid	day
	,22	dustin	7	45.0	22	101	10/10/96
	, 22	dustin	7	4 5.0	58	103	11/12/96
V	31	lubber	-8	55.5	22	101	10/10/96
\rangle	31	lubber	8	55.5	58	103	11/12/96
7	58	rusty	10	35.0	22	101	10/10/96
	-58	rusty	10	35.0	58	103	11/12/96

The Cross-Product and Renaming Operations

- Cross Product: RXS
 - Each row of R is paired with each row of S
 - The schema of the output relation concatenates S1's and R1's schemas
 - Conflict: R and S might have the same field name
 - Solution: Rename fields using the "Renaming Operator"
 - Renaming: $\rho(R(\overline{F}), E)$
- Example: S1XR1

Input Relations:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Output Relation:

	(sid)	sname	rating	age	(sid)	bid	day
	22	dustin	7	45.0	22	101	10/10/96
	22	dustin	7	45.0	58	103	11/12/96
	31	lubber	8	55.5	22	101	10/10/96
)	31	lubber	8	55.5	58	103	11/12/96
	58	rusty	10	35.0	22	101	10/10/96
	58	rusty	10	35.0	58	103	11/12/96

R1

The Join Operation

- (Theta) Join : $R \bowtie_{C} S = \sigma_{C}(R \times S)$
 - The schema of the output relation is the same as that of cross-product
 - It usually includes fewer tuples than cross-product
- Example: $S1 \bowtie S1.sid < R1.sid$ R1

Input Relations:

sid bid day 22 101 10/10/96 58 103 11/12/96

Output	Relation:
--------	------------------

\	(sid)	sname	rating	age	(sid)	bid	day
	22	dustin	7	45.0	58	103	11/12/96
	31	lubber	8	55.5	58	103	11/12/96
	4-						

S1

rating

10

age

45.0

55.5

35.0

sname

dustin

lubber

rusty

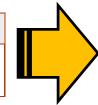
sid

31

58

R1

Will be redundant "if" the condition is S1.sid = R1.sid!


The Join Operation

- Equi-Join: $R \bowtie_{\mathcal{C}} S = \sigma_{\mathcal{C}}(R \times S)$
 - A special case of theta join where the condition c contains only equalities
 - The schema of the output relation is the same as that of cross-product, "but only one copy of the fields for which equality is specified"
- Natural Join: $R \bowtie S$
 - Equijoin on "all" common fields
- Example: $S1 \bowtie S1.sid = R1.sid$ R1

Input Relations:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

The Join Operation

- Equi-Join: $R \bowtie_{\mathcal{C}} S = \sigma_{\mathcal{C}}(R \times S)$
 - A special case of theta join where the condition c contains only equalities
 - The schema of the output relation is the same as that of cross-product, "but only one copy of the fields for which equality is specified"
- Natural Join: $R \bowtie S$
 - Equijoin on "all" common fields

• Example: $S1 \bowtie R1$

Input Relations:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

<u>sid</u>	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

R1

Output Relation:

$oldsymbol{L}$ /	

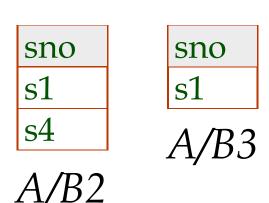
sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

In this case, same as equi-join!

The Division Operation

- Division: $R \div S$
 - Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved <u>all</u> boats


- Let A have 2 fields, x and y; B have only field y:
 - A/B contains all x tuples (sailors) such that for <u>every</u> y tuple (boat) in B, there is an xy tuple in A
 - Or: If the set of y values (boats) associated with an x value (sailor) in
 A contains all y values in B, then x value is in A/B
 - Formally: A/B = $\left\{ \left\langle x \right\rangle \mid \exists \left\langle x, y \right\rangle \in A \ \forall \left\langle y \right\rangle \in B \right\}$
- In general, x and y can be any lists of fields; y is the list of fields in B, and x
 y is the list of fields in A

Examples of Divisions

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

pno	pn
p2	p1
В1	p2
D1	p4
pno	В
p2	D
p4	
<i>B</i> 2	

sno
s1
s2
s3
s4
A/B1

Expressing A/B Using Basic Operators

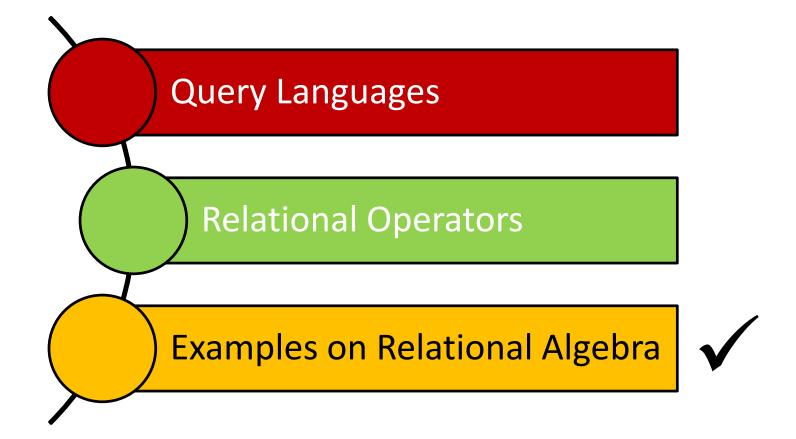
- Division can be derived from the fundamental operators
- Idea: For A/B, compute all x values that are not `disqualified' by some y value in B
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is "not" in A

Disqualified *x* values:
$$\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

A/B:
$$\pi_{\chi}(A)$$
 – all disqualified tuples

Relational Algebra: Summary

- Operators (with notations):
 - 1. Selection (1): selects a subset of rows from a relation
 - 2. Projection (1): deletes unwanted columns from a relation
 - 3. Cross-product (χ): allows combining two relations
 - Set-difference (—): retains tuples which are in relation 1,
 "but not" in relation 2
 - 5. Union (∪): retains tuples which are in "either" relation 1 or relation 2, "or in both"



Relational Algebra: Summary

- Operators (with notations):
 - 6. Intersection (∩): retains tuples which are in relation 1 "and" in relation 2
 - Join (▷<): allows combining two relations according to a specific condition (e.g., theta, equi and natural joins)
 - 8. Division (\div): generates the largest instance Q such that Q \times B \subseteq A when computing A/B
 - 9. Renaming (ρ): returns an instance of a new relation with some fields being potentially "renamed"

Outline

• Q1: Find names of sailors who've reserved boat #103

		1				1	ı		
Sid	Sname	Rating	Age	Sid	Bid	Day			
22	Dustin	7	45.0	22	101	10/10/98			
29	Brutus	1	33.0	22	102	10/10/98			
31	Lubber	8	55.5	22	103	10/8/98	Bid	Bname	Color
32	Andy	8	25.5	22	104	10/7/98	101	Interlake	Blue
58	Rusty	10	35.0	31	102	11/10/98	102	Interlake	Red
64	Horatio	7	35.0	31	103	11/6/98	103	Clipper	Green
71	Zorba	10	16.0	31	104	11/12/98	104	Marine	Red
74	Horatio	9	35.0	64	101	9/5/98	An Ir	nstance B1	of Boats
85	Art	3	25.5	64	102	9/8/98			
95	Bob	3	63.5	74	103	9/8/98			

An Instance R2 of Reserves

Q1: Find names of sailors who've reserved boat #103

$$\pi_{sname}((\sigma_{bid=103}^{} Reserves)) \bowtie Sailors)$$

$$\pi_{sname}(\sigma_{bid=103}^{} (Reserves) \bowtie Sailors))$$

$$\rho(Temp1, \sigma_{bid=103}^{} Reserves)$$

$$\rho(Temp2, Temp1) \bowtie Sailors)$$

$$\pi_{sname}(Temp2)$$

Which one to choose?

Q2: Find names of sailors who've reserved a red boat

Sid	Sname	Rating	Age	Sid	Bid	Day			
22	Dustin	7	45.0	22	101	10/10/98			
29	Brutus	1	33.0	22	102	10/10/98			
31	Lubber	8	55.5	22	103	10/8/98	Bid	Bname	Color
32	Andy	8	25.5	22	104	10/7/98	101	Interlake	Blue
58	Rusty	10	35.0	31	102	11/10/98	102	Interlake	Red
64	Horatio	7	35.0	31	103	11/6/98	103	Clipper	Green
71	Zorba	10	16.0	31	104	11/12/98	104	Marine	Red
74	Horatio	9	35.0	64	101	9/5/98	An Ir	nstance B1	of Boats
85	Art	3	25.5	64	102	9/8/98			
95	Bob	3	63.5	74	103	9/8/98			

An Instance R2 of Reserves

Q2: Find names of sailors who've reserved a red boat

$$\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$$

OR:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie Res)\bowtie Sailors)$$

A query optimizer can find the second one, given the first solution!

Q3: Find sailors who've reserved a red or a green boat

Sid	Sname	Rating	Age	Sid	Bid	Day			
22	Dustin	7	45.0	22	101	10/10/98			
29	Brutus	1	33.0	22	102	10/10/98			
31	Lubber	8	55.5	22	103	10/8/98	Bid	Bname	Color
32	Andy	8	25.5	22	104	10/7/98	101	Interlake	Blue
58	Rusty	10	35.0	31	102	11/10/98	102	Interlake	Red
64	Horatio	7	35.0	31	103	11/6/98	103	Clipper	Green
71	Zorba	10	16.0	31	104	11/12/98	104	Marine	Red
74	Horatio	9	35.0	64	101	9/5/98	An Ir	nstance B1	of Boats
85	Art	3	25.5	64	102	9/8/98			
95	Bob	3	63.5	74	103	9/8/98			

An Instance R2 of Reserves

Q3: Find sailors who've reserved a red or a green boat

$$\rho \ (\textit{Tempboats}, (\sigma_{color = 'red' \lor color = 'green'}, \textit{Boats}))$$

$$\pi_{sname}$$
 (Temphoats \bowtie Reserves \bowtie Sailors)

Can we define Tempboats using union?

What happens if \vee is replaced by \wedge ?

Q4: Find sailors who've reserved a red and a green boat

Sid	Sname	Rating	Age	Sid	Bid	Day			
22	Dustin	7	45.0	22	101	10/10/98			
29	Brutus	1	33.0	22	102	10/10/98			
31	Lubber	8	55.5	22	103	10/8/98	Bid	Bname	Color
32	Andy	8	25.5	22	104	10/7/98	101	Interlake	Blue
58	Rusty	10	35.0	31	102	11/10/98	102	Interlake	Red
64	Horatio	7	35.0	31	103	11/6/98	103	Clipper	Green
71	Zorba	10	16.0	31	104	11/12/98	104	Marine	Red
74	Horatio	9	35.0	64	101	9/5/98	An Ir	nstance B1	of Boats
85	Art	3	25.5	64	102	9/8/98			
95	Bob	3	63.5	74	103	9/8/98			

An Instance R2 of Reserves

Q4: Find sailors who've reserved a red and a green boat

$$\rho$$
 (Tempred, π_{sid} (($\sigma_{color=red}$ Boats) \bowtie Reserves))

$$\rho$$
 (Tempgreen, $\pi_{sid}((\sigma_{color=green}, Boats)) \bowtie Reserves))$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Would the previous approach (i.e., using ∩ instead of U) work?

Q5: Find the names of sailors who've reserved <u>all</u> boats

Sid	Sname	Rating	Age	Sid	Bid	Day			
22	Dustin	7	45.0	22	101	10/10/98			
29	Brutus	1	33.0	22	102	10/10/98			
31	Lubber	8	55.5	22	103	10/8/98	Bid	Bname	Color
32	Andy	8	25.5	22	104	10/7/98	101	Interlake	Blue
58	Rusty	10	35.0	31	102	11/10/98	102	Interlake	Red
64	Horatio	7	35.0	31	103	11/6/98	103	Clipper	Green
71	Zorba	10	16.0	31	104	11/12/98	104	Marine	Red
74	Horatio	9	35.0	64	101	9/5/98	An Ir	nstance B1	of Boats
85	Art	3	25.5	64	102	9/8/98			
95	Bob	3	63.5	74	103	9/8/98			

An Instance R2 of Reserves

Q5: Find the names of sailors who've reserved <u>all</u> boats

$$\rho$$
 (Tempsids, (π sid, bid Reserves) / (π bid Boats))
$$\pi$$
 sname (Tempsids \bowtie Sailors)

How can we find sailors who've reserved all 'Interlake' boats?

Summary

- The relational model has rigorously defined query languages that are simple and powerful
- Relational algebra is operational; useful as internal representation for query evaluation plans
- Several ways of expressing a given query; a query optimizer should choose the most efficient version

Next Class

Relational Calculus