Database Applications (15-415)

Relational Calculus Lecture 6, January 26, 2016

Mohammad Hammoud

Today...

- Last Session:
- Relational Algebra
- Today's Session:
- Relational calculus
- Relational tuple calculus
- Announcements:
- PS2 is now posted. Due on Feb 07, 2016 by midnight
- PS1 grades are out
- In the next recitation we will practice on relational algebra and calculus

Outline

- Relational Tuple Calculus (RTC)
- Why?
- Details
- Examples
- Equivalence with relational algebra
- 'Safety' of expressions

Motivation

- Question: What is the main "weakness" of relational algebra?
- Answer: Procedural
- It describes the steps (i.e., 'how')
- Still useful, especially for query optimization

Relational Calculus (in General)

- It describes what we want (not how)
- It has two equivalent flavors, 'tuple' and 'domain' calculus
- We will only focus on relational 'tuple' calculus
- It is the basis for SQL and Query By Example (QBE)
- It is useful for proofs (see query optimization, later)

Relational Tuple Calculus (RTC)

- RTC is a subset of 'first order logic':

Give me tuples ' t ', satisfying predicate ' P '

- Examples:
- Find all students: $\{t \mid t \in S T U D E N T\}$
- Find all sailors with a rating above 7:

$$
\{t \mid t \in \text { Sailors } \wedge \text { t.rating }>7\}
$$

Syntax of RTC Queries

- The allowed symbols:

$$
\begin{aligned}
& \wedge, \quad \vee, \quad \neg, \Rightarrow \\
& >,<, \quad=, \neq, \quad \leq, \quad \geq, \\
& (, \quad), \in
\end{aligned}
$$

- Quantifiers:

$$
\forall, \quad \exists
$$

Syntax of RTC Queries

- Atomic "formulas":

$t \in T A B L E$
t.attr op const
t.attr op s.attr

Where $\boldsymbol{o p}$ is an operator in the set $\{<,>,=, \leq, \geq, \neq\}$

Syntax of RTC Queries

- A "formula" is:
- Any atomic formula
- If P1 and P2 are formulas, so are

$$
\neg P 1 ; \neg P 2 ; P 1 \wedge P 2 ; P 1 \vee P 2 ; P 1 \Rightarrow P 2
$$

- If $\mathrm{P}(\mathrm{s})$ is a formula, so are

$$
\begin{aligned}
& \exists s(P(s)) \\
& \forall s(P(s))
\end{aligned}
$$

Basic Rules

- Reminders:
- De Morgan: $P 1 \wedge P 2 \equiv \neg(\neg P 1 \vee \neg P 2)$
- Implication: $P 1 \Rightarrow P 2 \equiv \neg P 1 \vee P 2$
- Double Negation:
$\forall s \in \operatorname{TABLE}(P(s)) \equiv \neg \exists s \in \operatorname{TABLE} \quad(\neg P(s))$
'every human is mortal : no human is immortal'

A Mini University Database

STUDENT		
Ssn	Name	Address
	123 smith	main str
	234 jones	forbes ave

CLASS		
c-id	c-name	units
$15-413$	s.e.	2
$15-412$	o.s.	2

TAKES		
SSN	c-id	grade
123	$15-413$	A
234	$15-413$	B

Examples

- Find all student records

output
tuple
of type 'STUDENT'

Examples

- Find the student record with ssn=123

Examples

- Find the student record with ssn=123

$$
\{t \mid t \in S T U D E N T \wedge t . s s n=123\}
$$

This is equivalent to the 'Selection' operator in Relational Algebra!

Examples

- Find the name of the student with ssn=123

Will this work?

Examples

- Find the name of the student with ssn=123

$$
\begin{gathered}
\{t \mid \exists s \in S T U D E N T(s . s s n=123 \wedge \\
t . n a m e=s . n a m e)\} \\
\text { 't' has only one column }
\end{gathered}
$$

This is equivalent to the 'Projection' operator in Relational Algebra!

Examples

- Get records of both part time and full time students*

$$
\begin{array}{r}
\left\{t \mid t \in F T_{-} S T U D E N T\right. \\
\left.t \in P T_{-} S T U D E N T\right\}
\end{array}
$$

This is equivalent to the 'Union' operator in Relational Algebra!

* Assume we maintain tables for PT_STUDENT and FT_STUDENT in our Mini University DB

Examples

- Find students that are not staff*

$$
\begin{gathered}
\{t \mid t \in S T U D E N T \wedge \\
t \notin S T A F F\}
\end{gathered}
$$

This is equivalent to the 'Difference' operator in Relational Algebra!

* Assume we maintain a table for STAFF in our Mini University DB and that STUDENT and STAFF are union-compatible

Cartesian Product: A Reminder

- Assume MALE and FEMALE dog tables as follows:

	${ }^{\mathbf{x}}$		M.Name	F.Name
MALE		FEMALE	spike	lassie
name		name	spike	shiba
spike		lassie	spot	lassie
spot		shiba	spot	shiba

This gives all possible couples!

Examples (Cont'd)

- Find all the pairs of (male, female) dogs

$$
\begin{aligned}
& \{t \mid \exists m \in M A L E \wedge \\
& \quad \exists f \in F E M A L E \\
& \quad(\text { t. } m-\text { name }=\text { m.name } \wedge \\
& \quad \text { t.f }- \text { name }=\text { f.name })\}
\end{aligned}
$$

This is equivalent to the 'Cartesian Product' operator in Relational Algebra!

More Examples

- Find the names of students taking 15-415

CLASS		
c-id	c-name	units
$15-413$	s.e.	2
$15-412$	o.s.	2

2-way Join!

TAKES	
SSN	c-id
123	grade
234	$15-413$
	A

More Examples

- Find the names of students taking 15-415

$$
\begin{aligned}
& \{t \mid \exists s \in S T U D E N T \\
& \qquad \exists e \in \text { TAKES }(\text { s.ssn }=e . s s n \wedge \\
& \quad \quad \text { } . n a m e=\text { s.name } \wedge \\
& \quad e . c-i d=15-415)\}
\end{aligned}
$$

More Examples

- Find the names of students taking 15-415

More Examples

- Find the names of students taking a 2-unit course

More Examples

- Find the names of students taking a 2-unit course

$$
\left.\begin{aligned}
& \{t \mid \exists s \in S T U D E N T \wedge \exists e \in T A K E S \\
& \quad \exists c \in C L A S S(\text { s.ssn }=e . s s n \wedge \\
& \quad \text { e.c }-i d=\text { c.c }-i d \wedge \\
& \text { t.name }=\text { s.name } \wedge \\
& \text { c.units }=2)\}
\end{aligned} \right\rvert\, \begin{aligned}
& \text { proin } \\
&
\end{aligned}
$$

What is the equivalence of this in Relational Algebra?

More on Joins

- Assume a Parent-Children (PC) table instance as follows:

PC		PC	
p-id	c-id	p-id	c-id
Mary	Tom	Mary	Tom
Peter	Mary	Peter	Mary
John	Tom	John	Tom

- Who are Tom's grandparent(s)? (this is a self-join)

More Join Examples

- Find Tom's grandparent(s)

$$
\begin{gathered}
\{t \mid \exists p \in P C \wedge \exists q \in P C \\
(p \cdot c-i d=q \cdot p-i d \wedge \\
p \cdot p-i d=t \cdot p-i d \wedge \\
q \cdot c-i d=" \text { Tom" })\}
\end{gathered}
$$

What is the equivalence of this in Relational Algebra?

Harder Examples: DIVISION

- Find suppliers that shipped all the bad parts

SHIPMENT	
$\mathrm{s} \#$	$\mathrm{p} \#$
s 1	p 1
s 2	p 1
s 1	p 2
s 3	p 1
s 5	p 3

Harder Examples: DIVISION

- Find suppliers that shipped all the bad parts

$$
\begin{aligned}
& \left\{t \mid \forall p\left(p \in B A D_{-} P \Rightarrow(\right.\right. \\
& \exists s \in \operatorname{SHIPMENT}(\\
& t . s \#=s . s \# \wedge \\
& s . p \#=p . p \#)))\}
\end{aligned}
$$

General Patterns

- There are three equivalent versions:

1) If it is bad, he shipped it

$$
\left\{t \mid \forall p\left(p \in B A D_{-} P \Rightarrow(P(t))\right\}\right.
$$

2) Either it was good, or he shipped it

$$
\left\{t \mid \forall p\left(p \notin B A D_{-} P \vee(P(t))\right\}\right.
$$

3) There is no bad shipment that he missed

$$
\left\{t \mid \neg \exists p\left(p \in B A D_{-} P \wedge(\neg P(t))\right\}\right.
$$

More on Division

- Find (SSNs of) students who are taking all the courses that $s s n=123$ is (and maybe even more)

One way to think about this:
Find students ' s ' so that if 123 takes a course => so does ' s '

More on Division

- Find (SSNs of) students who are taking all the courses that $s s n=123$ is (and maybe even more)

$$
\begin{gathered}
\{o \mid \forall t((t \in T A K E S \wedge t . s s n=123) \Rightarrow \\
\exists t 1 \in T A K E S(\\
\quad t 1 . c-i d=t . c-i d \wedge \\
t 1 . s s n=o . s s n) \\
)\}
\end{gathered}
$$

'Proof' of Equivalence

- Relational Algebra <-> RTC

But...

Safety of Expressions

- FORBIDDEN:

It has infinite output!!

- Instead, always use:

$$
\{t \mid \ldots t \in S O M E-T A B L E\}
$$

Summary

- The relational model has rigorously defined query languages - simple and powerful
- Relational algebra is more operational/procedural
- Useful as internal representation for query evaluation plans
- Relational calculus is declarative
- Users define queries in terms of what they want, not in terms of how to compute them

Summary

- Several ways of expressing a given query
- A query optimizer should choose the most efficient version
- Algebra and "safe" calculus have the same expressive power
- This leads to the notion of relational completeness

Next Class

SQL- Part I

