
Database Applications (15-415)

SQL-Part III
Lecture 9, February 7, 2016

Mohammad Hammoud

Today…
 Last Session:

 Standard Query Language (SQL)- Part II

 Today’s Session:

 Standard Query Language (SQL)- Part III

 Announcements:

 PS2 is due today by midnight

 Quiz I is on Thursday Feb 11, 2015 (all topics covered so far
are included)

 No class on Tuesday Feb 09 due to the Qatar National
Sports Day

 Project I is due on Tuesday Feb 16 by midnight

Outline

NULL values and Join Variants

Complex Integrity Constraints
and Triggers

Java Database Connectivity

NULL Values

 Column values can be unknown (e.g., a sailor may not yet
have a rating assigned)

 Column values may be inapplicable (e.g., a maiden-name
column for men!)

 NULL values can be used in such situations

 However, NULL values complicate many issues!

 Comparing NULL to a valid value returns unknown

 Comparing NULL to a NULL returns unknown

NULL Values

 Considering a row with rating = NULL and age = 20; How
does it compare with the following Boolean expressions?
 Rating = 8 OR age < 40

 Rating = 8 AND age < 40

 In general, what about?
 NOT unknown

 True OR unknown

 False OR unknown

 False AND unknown

 True AND unknown

 TRUE

 unknown

 unknown

 True
 unknown
 False
 unknown

NULL Values

 Considering a row with rating = NULL and age = 20; How
does it compare with the following Boolean expressions?
 Rating = 8 OR age < 40

 Rating = 8 AND age < 40

 In general, what about?
 NOT unknown

 True OR unknown

 False OR unknown

 False AND unknown

 True AND unknown

 TRUE

 unknown

 unknown

 True
 unknown
 False
 unknown

Three-Valued Logic!

Inner Joins

 Tuples of a relation that do not match some row in
another relation (according to a join condition c) do not
appear in the result

 Such a join is referred to as “Inner Join” (so far, all inner joins)

select ssn, c-name
from takes, class
where takes.c-id = class.c-id

select ssn, c-name
from takes join class on takes.c-id = class.c-id

Equivalently:

An Example of Inner Joins

CLASS

c-id c-name units

15-413 s.e. 2

15-412 o.s. 2

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

SSN c-name

123 s.e

234 s.e o.s.: gone!

 Find all SSN(s) taking course s.e.

Outer Joins

 Tuples of a relation that do not match some row in
another relation (according to a join condition c) can still
appear exactly once in the result

 Such a join is referred to as “Outer Join”

 Result columns will be assigned NULL values

select ssn, c-name
from takes outer join class
on takes.c-id=class.c-id

CLASS

c-id c-name units

15-413 s.e. 2

15-412 o.s. 2

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

SSN c-name

123 s.e

234 s.e.

null o.s.

An Example of Outer Joins

 Find all SSN(s) taking course s.e.

Joins

 The general SQL syntax:

select [column list]
from table_name

[inner | {left | right | full} outer] join
table_name
on qualification_list

Outer Join Type Description

Left Outer Join A rows without a matching B
row appear in the result

Right Outer Join B rows without a matching A
row appear in the result

Full Outer Join Both A and B rows without a
match appear in the result

Outline

NULL values and Join Variants

Complex Integrity Constraints
and Triggers

Java Database Connectivity

Integrity Constraints- A Review

 An Integrity Constraint (IC) describes conditions that
every legal instance of a relation must satisfy

 Inserts/deletes/updates that violate IC’s are disallowed

 ICs can be used to:

 Ensure application semantics (e.g., sid is a key)

 Prevent inconsistencies (e.g., sname has to be a
string, age must be < 20)

Types of Integrity Constraints- A Review

 IC types:
 Domain constraints

 Primary key constraints

 Foreign key constraints

 General constraints
 Useful when more general ICs than keys are involved

 Can be specified over a single table and across tables

General Constraints Over a Single Table

 Complex constraints over a single table can be defined using
CHECK conditional-expression

CREATE TABLE Sailors (sid INTEGER,
sname CHAR (10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10))

A primary key constraint A general constraint

A domain constraint

 How can we enforce that “Interlake” boats cannot be reserved?

CREATE TABLE Reserves (sid INTEGER,
bid INTEGER,
day DATE,
FOREIGN KEY (sid) REFERENCES Sailors,
FOREIGN KEY (bid) REFERENCES Boats,
CONSTRAINT noInterlakeRes,
CHECK (‘Interlake’ NOT IN

(SELECT B.bname
FROM Boats B
WHERE B.bid = Reserves.bid)))

A foreign key constraint

General Constraints Over a Single Table

General Constraints Across Tables-
Motivation

 How can we enforce that the number of boats plus
the number of sailors should not exceed 100?

CREATE TABLE Sailors (sid INTEGER,
sname CHAR (10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10)
CHECK (((SELECT COUNT (S.sid)

FROM Sailors S) +
(SELECT COUNT (B.bid)
FROM Boats B)) < 100))

What if the Sailors table is empty and we insert more than 100 rows into Boats?

General Constraints Across Tables-
Assertions

 How can we enforce that the number of boats plus
the number of sailors should not exceed 100?

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

ASSERTION is the right solution; not associated with either table!

New Domains

 Users can define new domains using the
CREATE DOMAIN statement

CREATE DOMAIN ratingval1 INTEGER DEFAULT 1
CHECK (VALUE >= 1 AND VALUE <= 10)

CREATE DOMAIN ratingval2 INTEGER DEFAULT 1
CHECK (VALUE >= 1 AND VALUE <= 20)

ratingval1 and ratingval2 CAN be compared!

Source type

Optional!

Domain constraints will be always enforced (also for new domains)!

Distinct Types

 Users can define new distinct types using the
CREATE TYPE statement

CREATE TYPE ratingtype1 AS INTEGER

ratingtype1 and ratingtype2 CANNOT be compared!

CREATE TYPE ratingtype2 AS INTEGER

Domain constraints will be always enforced (also for new types)!

Triggers

 A trigger is a procedural code that is automatically
executed in response to certain events on a
particular table or view in a database

 Triggers can be activated either before or after

 Insertions

 Deletions

 Updates

A Trigger Example

 Set a timestamp field whenever a row in the takes
table is updated

 First: we need to add our timestamp field

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

ALTER TABLE takes
ADD COLUMN updated TIMESTAMP

A Trigger Example

 Set a timestamp field whenever a row in the takes
table is updated

 Second: we need to create a function that sets the
“updated” column with the current timestamp

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

CREATE FUNCTION update_col()
BEGIN

NEW.updated = NOW();
RETURN NEW;

END

A Trigger Example

 Set a timestamp field whenever a row in the takes
table is updated

 Third: we need to Invoke update_col() when a row in the
takes table is updated

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

CREATE TRIGGER update_takes_modtime
AFTER UPDATE ON takes
FOR EACH ROW
EXECUTE PROCEDURE update_col();

A row-level trigger;
otherwise, it will be a
statement-level trigger

Outline

NULL values and Join Variants

Complex Integrity Constraints
and Triggers

Java Database Connectivity

Java Database Connectivity

 SQL commands can be embedded in host language programs

 A popular data access technology which provides an API for
querying and manipulating data in (any) storage system is
called Java Database Connectivity (JDBC)

 Direct interactions with a DBMS occurs through a DBMS-
specific driver

 A driver is a software program that translates JDBC calls into
DBMS-specific calls
 Drivers do not necessarily interact with a DBMS that understands SQL

 Thus, a DBMS in JDBC’s parlance is usually referred to as data source

Establishing a Connection

 With JDBC, a database is represented by a URL

 With PostgreSQL™, this takes one of the following forms:
 jdbc:postgresql:database

 jdbc:postgresql://host/database

 jdbc:postgresql://host:port/database

 To connect to a database, a Connection instance from JDBC
can be used

Connection db = DriverManager.getConnection(url, username, password);

Establishing a Connection

 A number of additional properties can be used to specify
additional driver behavior specific to PostgreSQL™

String url = "jdbc:postgresql://localhost/test";
Properties props = new Properties();
props.setProperty("user",“Hammoud");
props.setProperty("password","secret");
props.setProperty("ssl","true");
Connection conn = DriverManager.getConnection(url, props);

Equivalently:

String url = "jdbc:postgresql://localhost/test?user=Hammoud&password=secret&ssl=true";
Connection conn = DriverManager.getConnection(url);

Establishing a Connection

public Connection getConnection() throws SQLException {

String url = "jdbc:postgresql://localhost/test";
Properties props = new Properties();
props.setProperty("user",“Hammoud");
props.setProperty("password","secret");
props.setProperty("ssl","true");
Connection conn = DriverManager.getConnection(url, props);

System.out.println("Connected to database");
return conn;

}

 Putting it all together, you can create the following function:

Creating Tables

 Assume the following students table:

Sid Name

1 Hammoud

2 Esam

CREATE TABLE students(sid INTEGER, name CHAR(30), PRIMARY KEY (sid)) SQL:

public void createTable() throws SQLException {
String createT = "create table students (sid INTEGER, " +

“name CHAR(30) “ +
"PRIMARY KEY (sid))";

Statement stmt = null;
try { stmt = conn.createStatement();

stmt.executeUpdate(createT);
} catch (SQLException e) { e.printStackTrace(e); }

finally { if (stmt != null) { stmt.close(); } }
}

JDBC:

Populating Tables

 Assume the following students table:

Sid Name

1 Hammoud

2 Esam

INSERT INTO students values (1, ‘Hammoud)
INSERT INTO students values (2, ‘Esam’)

SQL:

public void populateTable() throws SQLException {
Statement stmt = null;
try {
stmt = conn.createStatement();
stmt.executeUpdate("insert into students values(1, ‘Hammoud‘)”);
stmt.executeUpdate("insert into students values(2, ‘Esam‘)”);
} catch (SQLException e) {}
finally { if (stmt != null) { stmt.close(); } }

}

JDBC:

Querying Tables

 Assume the following students table:

Sid Name

1 Hammoud

2 Esam

SELECT sid, name from studentsSQL:

public static void viewTable() throws SQLException {
Statement stmt = null;
String query = "select sid, name from students";
try {
stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) {

int sID = rs.getInt(“sid");
String sName = rs.getString(“name");
System.out.println(sName + "\t" + sID); }

} catch (SQLException e) {} finally { if (stmt != null) { stmt.close(); } }
}

JDBC:

Columns retrieved by names

A “cursor” that points
to one row of data
at a time

Querying Tables

 Assume the following students table:

Sid Name

1 Hammoud

2 Esam

public static void viewTable() throws SQLException {
Statement stmt = null;
String query = "select sid, name from students";
try {
stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) {

int sID = rs.getInt(1);
String sName = rs.getString(2);
System.out.println(sName + "\t" + sID); }

} catch (SQLException e) {} finally { if (stmt != null) { stmt.close(); } }
}

SELECT sid, name from studentsSQL:

OR: Columns retrieved by numbers

JDBC:

Cursor Methods

 Methods available to move the cursor of a result set:

 next()

 previous()

 first()

 Last()

 beforeFirst()

 afterLast()

 relative(int rows)

 absolute(int row)

By default, you can
call only next()!

Updating Tables

 By default, ResultSet objects cannot be updated, and their cursors can
only be moved forward

 ResultSet objects can be though defined to be scrollable (the cursor
can move backwards or move to an absolute position) and updatable

public void modifyStudents() throws SQLException {
Statement stmt = null;
try {
/* stmt = con.createStatement(); */
stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);
ResultSet uprs = stmt.executeQuery("SELECT * FROM students");
while (uprs.next()) {

String old_n = uprs.getString(“name");
uprs.updateString(“name", “Mohammad” + old_n);
uprs.updateRow(); }

} catch (SQLException e) {} finally { if (stmt != null) { stmt.close(); } }
}

Result Set Types

 TYPE_FORWARD_ONLY (the default)

 The result set is not scrollable

 TYPE_SCROLL_INSENSITIVE

 The result set is scrollable

 The result set is insensitive to changes made to the underlying
data source while it is open

 TYPE_SCROLL_SENSITIVE

 The result set is scrollable

 The result set is sensitive to changes made to the underlying data
source while it is open

Result Set Concurrency

 The concurrency of a ResultSet object determines
what level of update functionality is supported

 Concurrency levels:

 CONCUR_READ_ONLY (the default)

 The result set cannot be updated

 CONCUR_UPDATABLE

 The result set can be updated

Prepared Statements

 JDBC allows using a PreparedStatement object for sending SQL
statements to a database

 This way, the same statement can be used with different
values many times

…
String sql = “INSERT into students values (?, ?)”;
PreparedStatement ps = conn.prepareStatement(sql);
ps.clearParameters();
ps.setInt(1, 111);
ps.setString(2, “Hammoud”);
int numRows1 = ps.executeUpdate();

ps.setInt(1, 222);
ps.setString(2, “Esam”);
int numRows2 = ps.executeUpdate();
…

More about
JDBC in the

upcoming two
recitations!

1

2

Next Class

Storing Data: Disks and Files

