
15-415: Database Applications

Project 3: Extending the Functionality of a Basic B+ Tree

School of Computer Science

Carnegie Mellon University, Qatar
Spring 2016

Assigned date: March 17, 2016

Due date: April 03, 2016 by 11:59PM

I. Project Objectives

DBMSs heavily use and rely on B+ trees to speed-up operations like equality searches,

range searches, grouping, and ordering, among others. This assignment is designed to

make you familiar with the implementation of a B+ tree data structure. You will extend

a basic B+ tree implementation by incorporating additional functionalities described later

in the document.

II. The B+ Tree Package

You will be provided with a B+ Tree Package (posted on the course web-page) which

contains an implementation of a B+ tree with Alternative 3. This package will be the

basis of this project. In the forthcoming paragraphs, we describe the package content

and how to compile it.

a. A Brief Primer

The package encompasses four folders alongside a README and a makefiles. The

directories and their contents are as follows:

 DOC: useful documentation of the code.

 SRC: source code.

 Datafiles: sample data to load into the tree.

 Tests: sample tests and their solutions.

The README file contains information about using the provided makefile for

compiling, cleaning, and testing the code, in addition to a description of the commands

supported by the basic B+ tree.

b. Compilation

To compile the source code, unzip the package and type make. This compiles the code

and creates an executable called main in addition to four files: B-TREE_FILE,

POSTINGSFILE, TEXTFILE, and parms. All information in the B+ tree is stored in

these files as follows:

 B-TREE_FILE: stores the tree nodes including keys and pointers

 POSTINSFILE: stores the list of pointers to data records

 TEXTFILE: stores the actual data records

 parms: stores configuration parameters for the tree

To allow the program to access a tree and its data records across multiple executions,

do not delete these files and ensure that they reside in the same directory as the

executable main. Conversely, delete those files when you wish to create a new tree.

c. High-Level View

To this end, Figure 1 presents a bird’s eye view of the structure of our B+ tree with

Alternative 3. Each non-leaf node stores a set of keys and pointers to other nodes (as

illustrated by arrow 1). In a leaf node, however, a pointer associated with a particular

key refers to a list of pointers called the postings list (as illustrated by arrow 2). Each

element or posting in the postings list is a pointer referring to a text document that

contains the key (as illustrated by arrow 3).

Figure 1: A High-Level View of the Structure of the B+ tree

1

2
3 Doc 1

Doc 2

Doc n

Postings list

Each node or posting is a C struct whose binary representations are stored in -

TREE_FILE and POSTINGSFILE, respectively. TEXTFILE is a file of concatenated

text documents. When main is executed and the aforementioned files are present, the

program loads all the data in those files into the tree. Otherwise, the program simply

creates a new empty tree.

d. Functionalities

As mentioned above, our B+ tree implementation stores words as keys. Since the tree

enables us to retrieve documents given words (as opposed to finding words in given

documents), the tree is referred to as an inverted index.

When executed, main loops indefinitely, accepting and processing commands from the

user. Table 1 summarizes all the supported commands and their

corresponding outputs.

COMMAND

OUTPUT

C Prints all the keys that are present in the tree, in
asCending lexicographical order.

i <doc> Parses the text in <doc> which is a text file, and inserts the
uncommon words (i.e., words not present in “comwords.h”) into
the B+ tree. More specifically, the uncommon words of <doc>
make the “keys” of the B+ tree, and the value for all the keys is
set to the text of <doc>.

p <num> Prints the keys in a particular page of the B+ tree where <num>
is the page number. It also prints some statistics about the page
such as the number of bytes occupied, the number of keys in the
page, etc.

s <key> searches the tree for <key> where <key> is a single word. If
found, the program prints “Found the key!”. If not, it prints “Key
not found!”.

S <key> Searches the tree for <key>. If found, the program prints the text
of all documents in which the key is present, also known as the
posting list of <key>. If not, it prints “Key not found!”.

T Prints the tree in a preTty format! If the tree is empty, it
prints “Tree empty!” instead.

x Exits the program.

Table 1: Supported Commands

To see a demo type make demo. The demo inserts some text documents into the tree

(using the command i) and then searches for the word “american” (using the command

S). As described in Table 1, the command S will print the text of each document

containing the word “american”.

III. Additional Functionalities

In this project, you will implement two additional commands as described in Table 2.

COMMAND

OUTPUT

f <key1> <keys2> Print in alphabetical order (forward) the distinct keys that are in
the range defined by <key1> and <key2> (including the bounds).
If <key1> and <key2> are not in alphabetical order, print “Invalid
key order!”. If no documents have keys within the given range,
print “Keys in the given range not found!”.

b <key1> <keys2> Print in reverse alphabetical order (backward) the distinct keys
that are in the range defined by <key1> and <key2> (including
the bounds). If <key1> and <key2> are not in alphabetical order,
print “Invalid key order!”. If no documents have keys within the
given range, print “Keys in the given range not found!”.

Table 2: Operations to Implement

Implement the commands shown in Table 2 in the files keysRange_ToImplement.c

and keysRangeRev_toImplement.c, respectively (found the SRC directory). Note that for

the command b, you are not allowed to store the output of the command f in an array

and subsequently print it.

IV. Testing

For your convenience, we have provided you with sample tests and their corresponding

outputs in the directory Tests. To see if your implementation of the commands f and b

run correctly on the test files, type:

 make test_range

 make test_rangeRev

Each test matches your solution output with our reference output and if the difference is

none, your implementation will pass the test. In addition to the provided test cases, you

must devise tests (of your own) that run on different datasets (i.e., documents) of your

choice and different argument values. Also, consider corner cases like invalid inputs,

non-existent words etc.

V. Getting Started

In order to jump-start your implementation, you should:

 Run the demo and make sure you understand the tree structure

 Study the important data structures defined in def.h

 Understand how the basic search (in search.c) works

VI. Deliverables

Zip an archive (named P3_<your_andrew_id>.zip) containing a complete

implementation of the files keysRange_ToImplement.c and

keysRangeRev_ToImplement.c in addition to any other supplementary c files required to

run the commands. If you will alter the makefile, please make sure to include your

updated makefile as well. Submit this archive to the Andrew File System at

/afs/qatar.cmu.edu/usr10/mhhammou/www/15415-s16/handin/p3/<your_andrew_id>

VII. Getting Help

You can get help by visiting the professor and the TA during their office hours or by

appointment. You can also post your questions on Piazza. The link for the course home

page on Piazza is: http://piazza.com/qatar.cmu/spring2016/15415/home

VIII. Late Policy

 If you hand in on time, there is no penalty (duh!).

 0 -24 hours late = 25% penalty.

 2 4 -48 hours late = 50% penalty.

 More than 48 hours late = you lose all the points for this project.

NOTE: You can’t use your grace-days quota on this project. For details about the quota,

please refer to the course syllabus.

http://piazza.com/qatar.cmu/spring2016/15415/home

