
15-415: Database Applications

Project 2

School of Computer Science

Carnegie Mellon University, Qatar

Spring 2018

Assigned Date : February 19th, 2018

Due Date : March 22nd, 2018

1



1 Project Objectives
You are to create a movie recommendation website, CMUQFlix, which allows
users to (1) login, (2) rate movies, (3) form parties with other users, and (4)
get personalized and party-based movie recommendations. The goal is to learn
how to set up a website with a database back-end. In particular, you are to
develop two alternative versions of the back-end logic, one using SQL and the
other using object-relational mapping (ORM).

2 Data Storage
CMUQFlix uses PostgreSQL to store different types of data as described below:

1. User data: For every user, we want to record their username (e.g.,
coolguy2016), password, and email address. Usernames should be unique
and passwords cannot be empty.

2. Movie data: For the movies, we will use the MovieLens database (from
P1), which maintains the following fields for each movie: a unique id, its
title, the year of its release, a global average rating between 1.0 and 5.0
(or 0.0 if it is unrated), and the total number of ratings it has received.

3. Personalized ratings: Any user can award any movie a personalized
rating out of five stars (i.e., an integer between 1 and 5). Therefore, for
each user, the system should keep a record of their personalized ratings.

4. Movie parties: Any group of users that enjoy watching movies together
can form a movie party, identified simply by an auto-incrementing integer.
The system should record the memberships of users in parties.

3 System Functionalities
The CMUQFlix website consists of different webpages that serve different pur-
poses as described below:

1. Sign-Up Page [5 points]: Before a user can start using your system, they
need to sign up by providing a username, password, and email address.
None of the fields can be empty. If a username chosen by a user during
sign-up already exists, the system should give an error message and prompt
for a different username. You may store the password as plain text or using
an encrypted hash, and you need not verify the email address.

2. Login Page [3 points]: A user should be able to log in with the username
and password they provided during sign-up. For security reasons, no one
should be able to view any page of your website without logging in. Also,
once logged in, the user should not need to log in to view other pages.
A login session is valid until the user explicitly logs out, unless the user
remains inactive for 30 minutes, in which case the session should automat-
ically expire. Users should be able to log out manually at any time. Hint:
In this project we use Django, which provides easy session management.
You will simply need to modify the default session timeout period.

2



3. Profile Page [2 points]: When a user logs in, they should see their profile
information, which includes their username and email address.

4. Movies Page [20 points]: A user should be able to navigate to a webpage
that lists all the movies in the database divided into two sets: (a) rated
movies (i.e., movies that the user has already rated) and (b) unrated
movies (i.e., movies that the user has not yet rated). Both sets should be
sorted alphabetically by title. Moreover, this page should allow the user
to award any movie a personalized rating between 1 and 5 stars (where
1: Awful!, 2: Boring, 3: Nice, 4: Good, 5: Epic!). More specifically:

(a) Each entry in the set of rated movies should be accompanied by
both its global rating and the user’s personalized rating, along with
an option for the user to modify or delete their personalized rating.

(b) Each entry in the set of unrated movies should be accompanied by
the global rating of that movie, along with an option for the user to
award it a personalized rating.

Whenever a user adds, modifies, or deletes their personalized rating for
some movie, the system should reflect this change in the movies table
by updating that movie’s global average rating and total number of rat-
ings. For example, say we have a movie titled Alien with a global av-
erage rating of 3.25 over 20 total ratings. Now, say a user named Alice
modifies their (existing) personalized rating for Alien from 3 to 4 stars.
Consequently, the global average rating of Alien should be updated to
(3.25 × 20 + (4 − 3)) ÷ 20 = 3.3, while its total number of ratings
stays unchanged since this counts as a modification and not a new rating.

5. Personalized Recommendations Page [20 points]: A user should be
able to navigate to a webpage that generates up to five personalized movie
recommendations based on the following criteria:

(a) We say that a user liked a movie if they awarded it 3 stars or higher.
(b) Personalized recommendations should not include any movies that

the user has already rated.
(c) If the user has not yet liked any movie that at least one other user

has also liked, then display the top five movie titles with the highest
global average ratings, along with their respective ratings.

(d) If the user has liked at least one movie in common with one or more
other users, then these users implicitly form the user’s movie clan.
As such, display the top five movies with the highest average clan
ratings (derived from the ratings awarded by the clan’s members
only), along with their respective clan ratings.

(e) The recommendations should be sorted in descending order by their
ratings. Ties should be broken by sorting the titles alphabetically.

Figure 1 demonstrates this logic with an example. To make recommenda-
tions for the user Alice, we first find her movie clan, which is the set of
users who liked at least one movie in common with her. Thus, since Alien
is the only movie that Alice liked, her clan includes Bilal and Dana, who

3



also liked Alien. We then report the five most popular movies among Al-
ice’s clan based on their average ratings (i.e., as awarded by the members
of this clan, not globally). Thus, the movies to recommend to Alice would
be Logan and Titanic (in that order). Of course, we do not return Alien
or Dunkirk, since Alice has rated them already.

4 2 3 4 5 4 434 3 4

Bilal

Dunkirk

Chang

Titanic

Esha

Wall‐E

Clan Rating ‐ ‐ 4.5 4.0 ‐

Global Rating 3.25 3.0 4.67 3.67 4.0

Alice

Logan

5

Dana

= Alice’s Clan

= Already Rated

= Recommended

N N/     = Rating 2

Alien

4

Figure 1: Example of clan-based movie recommendations for user ‘Alice’.

6. Movie Party Membership Page [20 points]: This page should allow the
user to participate in movie parties with other users by creating, joining,
or leaving parties. To facilitate this:

• The page should list all the parties in the database divided into two
sets: (a) joined parties and (b) other parties (based on the user’s
current memberships).

• Each listed entry should link to its corresponding Movie Party Rec-
ommendations page (see below) and be accompanied by its size (i.e.,
the number of members in that party) and an option for the user to
leave or join that party (depending on their current membership in
that party).

• A party can have a maximum of 10 members at any given time (its
size may change over time as members join or leave). As such, the
user should not be allowed to join a party that is already full.

• The user should be able to create a new party. Upon creating a party,
the user should join it automatically, thus becoming its first member.

7. Movie Party Recommendations Page [20 points]: The user should be
able to navigate to this page from the Movie Party Membership page (see
above) in order to see the list of members and movie recommendations
associated with a particular movie party. The page should show:

• The members of the party listed using their usernames sorted in
ascending order.

• The top five most popular movies among the party’s members (i.e.,
chosen from the set of movies that previously received a rating from
one or more of the party’s members). Sort the movies by their average
ratings among the party’s members (i.e., derived from the ratings

4



awarded by the party’s members only) in descending order, with
ties broken by sorting the titles alphabetically. Each entry in this
list should be accompanied by its average rating among the party’s
members and its global average rating.

Figure 2 demonstrates this logic with an example. To make recommen-
dations for a movie party that has two members, Alice and Bilal, we first
narrow down the pool of movies to the ones that either (or both) of them
have previously rated, namely, Alien, Dunkirk, and Logan. We then re-
port the most highly rated movies (at most five) in this list based on their
average ratings calculated from Alice’s and Bilal’s ratings only. Thus, the
movies to recommend to this party would be Logan, Alien, and Dunkirk
(in that order).

4 2 3 4 5 4 434 3 4

Dunkirk Titanic Wall‐E

Party Rating 3.5 3.0 4.0 ‐ ‐

Global Rating 3.25 3.0 4.67 3.67 4.0

Logan

5

= Party Members

= Recommended

N N/     = Rating 2

Alien

4

DanaAlice EshaBilal Chang

Figure 2: Example of party-based movie recommendations for a movie
party comprising users ‘Alice’ and ‘Bilal’.

8. Reporting Page [10 points]: The system should print a summary of user
activity in a report page. The page should report the following system-
wide statistics:

• The total number of movies.
• The total number of registered users.
• The total number of ratings.
• The average number of ratings per movie.
• The average number of ratings per user.
• The list of avid users, namely, the top 10 users with the most num-
ber of ratings. The users should be listed using their usernames and
sorted by their number of ratings in descending order, with ties bro-
ken by sorting the usernames alphabetically.

• The total number of parties.
• The average number of users per party.
• The list of popular users, namely, the top 10 users with the most
number of party memberships. The users should be listed using their
usernames and sorted by their number of memberships in descending
order, with ties broken by sorting the usernames alphabetically.

5



4 System Architecture
CMUQFlix adopts a three-tier architecture with a front-end, middle tier, and
back-end as shown in Figure 3.

Client Browser Web/App Server

Django 
(Python)
Worker

Database Server 
(PostgreSQL)

Movies,
Users, …

HTTP Server

Figure 3: Three-tier architecture of CMUQFlix.

The front-end is a client browser that can display the various webpages of
CMUQFlix. The back-end is a PostgreSQL database housing the movies and
user relations (among others). The middle tier is the middle-man that connects
the front-end with the back-end to make a whole system.

In particular, the middle tier consists of a web server (e.g., Apache) that,
as the name implies, serves clients’ HTTP requests for HTML webpages. An
HTML webpage served by the web server is either a static page whose HTML
content has been predefined at the time of website creation, or a dynamic page
whose HTML content is produced by a Django worker process running on the
web server. Django is a Python-based web application framework that facilitates
the encoding of our application logic (including any interactions with a back-end
database) and dynamically generates webpages based on this logic. Therefore,
the web server houses a combination of our application’s static HTML struc-
ture/content and our application’s dynamic Python code.

5 Project Milestones
You are to develop two alternative implementations of the CMUQFlix web
application using Django:

1. SQL [50% of grade]: All your application logic that deals with querying
or updating the database must be written and executed as raw SQL. In
other words, you may not use Django’s ORM features (see below). For
more information on how to program using raw SQL in Django see [1].

2. ORM [50% of grade]: The structure and implementation of your appli-
cation should follow Django’s Model-View-Template (MVT) development
pattern and object-relational mapping (ORM) data model. This approach
precludes the need for writing raw SQL by providing you with a purely
object-oriented data model. Django will automatically generate and ex-
ecute the appropriate SQL commands as and when required. For more
information on how to program using Django’s MVT pattern and ORM
model see [2].

1 https://docs.djangoproject.com/en/2.0/topics/db/sql/#executing-custom-sql-directly
2 https://docs.djangoproject.com/en/2.0/intro/tutorial01/

6

https://docs.djangoproject.com/en/2.0/topics/db/sql/#executing-custom-sql-directly
https://docs.djangoproject.com/en/2.0/intro/tutorial01/


An important objective of the project is to appreciate the kind of tedious
complexities handled for us transparently by any ORM framework. This should
become evident upon contrasting the two aforementioned implementations. Note
that we shall cover both of the approaches over the course of multiple recitations.

You need to achieve the following milestones in order to complete the project:

1. Install PostgreSQL [3] and Python [4] on your machine.

2. Additionally, we highly recommend that you use PyCharm Professional
IDE [5] (free for academics) for Django/Python development. You can
refer to the recitation notes provided by your TA for further details on
the installation procedure.

3. The Django framework includes a lightweight web server for initial proto-
typing and testing. If you prefer, however, you may install and use any
other production web server, such as NGINX [6].

4. For your SQL implementation:

(a) Download the cmuqflix_sql folder from the course website [7]. This
will be your working directory.

(b) Create a new database called cmuqflix_sql in PostgreSQL.
(c) The cmuqflix_sql folder contains an SQL script called movies.sql,

which creates a movies table in the database and populates it with
the MovieLens dataset. Run this script using the PostgreSQL command-
line client: psql -U postgres -f movies.sql

(d) Using the Django management console (manage.py), run migrate to
push Django’s internal schema to the database.

(e) Manually create all the necessary tables in the database for imple-
menting the functionalities listed in Section 3.

(f) The cmuqflix_sql folder provides a skeleton Django web applica-
tion that you can build upon. Implement the necessary Django views
(business logic) and templates (user interface) for achieving the re-
quired functionalities.

5. For your ORM implementation:

(a) Download the cmuqflix_orm folder from the course website. This
will be your working directory.

(b) Create a new database called cmuqflix_orm in PostgreSQL.
(c) Using the Django management console (manage.py), run migrate to

push Django’s internal schema to the database.
3 https://www.postgresql.org/
4 https://www.python.org/
5 https://www.jetbrains.com/pycharm/download/
6 https://www.nginx.com/
7 https://web2.qatar.cmu.edu/~mhhammou/15415-s18/projects/P2_Archive.tgz

7

https://www.postgresql.org/
https://www.python.org/
https://www.jetbrains.com/pycharm/download/
https://www.nginx.com/
https://web2.qatar.cmu.edu/~mhhammou/15415-s18/projects/P2_Archive.tgz


(d) The cmuqflix_orm folder provides a skeleton Django web application
that you can build upon. This includes a Movies model (or class).
Using the Django management console (manage.py), run migrate to
push this model to the database (this creates the movies table) and
then run loaddata to load the provided movie fixtures (i.e., records)
in fixtures/movies.json (this populates the movies table).

(e) Develop all the models, views, and templates necessary for imple-
menting the functionalities listed in Section 3. Note that every time
you create or modify a model, you must run makemigrations fol-
lowed by migrate to push it to the database (using manage.py).

6 Final Deliverable
In an archive (named P2_<AndrewID>.zip) add your modified cmuqflix_sql
and cmuqflix_orm folders. In cmuqflix_sql/scripts, also include a script
(named create.sql) containing all the SQL statements required to create the
tables, views, and indexes used by your SQL implementation. In addition, if you
wrote any SQL scripts or JSON fixtures for populating your database with test
data, include them in cmuqflix_sql/scripts and cmuqflix_orm/fixtures,
respectively.

7 Getting Help
You can get help by visiting the professor and the TA during their office hours
or by appointment. You can also post your questions on Piazza [8].

8 Late Policy
• If you hand in on time, there is no penalty.

• 0-24 hours late = 25% penalty.

• 24-48 hours late = 50% penalty.

• More than 48 hours late = you lose all the points for this project.

Note: You can use your grace-days quota. For details about the quota,
please refer to the course syllabus.

8 http://piazza.com/qatar.cmu/spring2018/15415/home

8

http://piazza.com/qatar.cmu/spring2018/15415/home

