15-415: Database Applications

Project 3
School of Computer Science
Carnegie Mellon University, Qatar

Spring 2018

Assigned Date : March 22"¢, 2018

Due Date : April 15", 2018



1 Project Objectives

DBMSs heavily use and rely on BT trees to speed-up operations like equality
searches, range searches, grouping, and ordering, among others. This assign-
ment is designed to make you familiar with the implementation of a B tree
data structure. You will extend a basic B tree implementation by incorporat-
ing additional functionalities described later in the document.

2 The B' Tree Package

You will be provided with a BT Tree Package (posted on the course web-page)
which contains an implementation of a BT tree with Alternative 3. This package
will be the basis of this project. In the forthcoming paragraphs, we describe the
package content and how to compile it.

2.1 A Brief Primer

The package encompasses seven folders alongside a README and a Makefile.
The directories and their contents are as follows:

1. bin: main driver program for creating and using the index.
conf: configuration parameters for tuning the index.

datasets: two demo datasets, namely dictionary and movies.
db: stores the persisted index data files (described below).

man: contains user and programming manuals.

A T o

src: the project’s source code.
7. tests: demos and sample tests with their solutions.

The README contains information about using the provided Makefile for
compiling, cleaning, and testing the code, in addition to a description of the
commands supported by the basic BT tree.

2.2 Compilation

To compile the source code, unzip the package and type make. This compiles
the code and creates an executable called main in addition to three files in the
db folder: btree.bin, postings.bin, and docs.bin. All information in the
BT tree is stored in these files as follows:

1. btree.bin: stores the tree nodes including keys and pointers.
2. postings.bin: stores the list of pointers to data records.
3. docs.bin: stores the actual data records.

To allow the program to access a tree and its data records across multiple
executions, do not delete these files and ensure that they reside in the db folder.
Conversely, delete those files via make clean-db when you wish to create a
new tree.



2.3 High-Level View

Figure 1 below presents a high-level view of the structure of our BT tree with
Alternative 8. Each non-leaf node stores a set of keys and pointers to other nodes
(as illustrated by arrow 1). In a leaf node, however, a pointer associated with a
particular key refers to a list of pointers called the postings list (as illustrated
by arrow 2). Each element or posting in the postings list is a pointer referring
to a text document that contains the key (as illustrated by arrow 3).

btree.bin postings.bin docs.bin
/’_3\ ?Tnerican beauty | o 4
2
— usual Doc 2
N /\ suspect ...
\-] american history Docn
| -~
—_—>
Postings list

Each node or posting is a C struct whose binary representations are stored
in btree.bin and postings.bin, respectively. docs.bin is a file of concate-
nated text documents. When main is executed and the aforementioned files are
present, the program loads all the data in those files into the tree. Otherwise,
the program simply creates a new empty tree.

Handout continues on the next page



2.4 Functionalities

As mentioned above, our BT tree implementation stores words as keys. Since
the tree enables us to retrieve documents given words (as opposed to finding
words in given documents), the tree is referred to as an inverted index.

When executed, main loops indefinitely, accepting and processing commands
from the user (see src/main.c). Table 1 below summarizes all the supported
commands and their corresponding outputs:

Command Output

Prints all the keys that are present in the tree, in asCending
lexicographical order.

Parses the text in <doc> which is a text file, and Inserts the
uncommon words (i.e., words not present in "comwords.h")
into the Bt tree. More specifically, the uncommon words
of <doc> make the "keys" of the BT tree, and the value for
all the keys is set to the text of <doc>.

i <doc>

Prints the keys in a particular page of the BT tree where
<num> is the page number. It also prints some statistics
about the page such as the number of bytes occupied, the
number of keys in the page, etc.

P <num>

This searches the tree for <key> where <key> is a single
word. If found, the program prints "Found the key!" and if
not, it prints "Key not found!"

s <key>

This Searches the tree for <key>. If found, the program
prints the text of all documents in which the key is present,
also known as the posting list of <key>. If not, it prints
"Key not found!"

S <key>

Prints the tree in a neaT in-order format! If the tree is
empty, it prints "Tree empty!" instead.

q quits the program.

To see a demo of how the tree works, you can type make demo-movies.
The demo inserts all the text documents in the movies dataset into the tree
(using the command i), then prints the resulting state of the tree in an in-order
format (using the command T), and, finally, searches for the word "american"



(using the command S). As described in Table 1, the command S will print the
text of each document containing the word "american".

3 Additional Functionalities

In this project, you will implement two additional commands as described in
Table 2 below:

Command Output

Print in alphabetical order (forward) the distinct
keys that are in the range defined by <key1> and
<key2> (including the bounds). If <keyl> and
<key2> are not in alphabetical order, print "Invalid
key order!" If no documents have keys within the
given range, print "Keys in the given range not
found!"

f <keyl> <keys2>

Print in reverse alphabetical order (backward) the
distinct keys that are in the range defined by <key1>
and <key2> (including the bounds). If <key1> and
<key2> are not in alphabetical order, print "Invalid
key order!" If no documents have keys within the
given range, print "Keys in the given range not
found!"

b <keyl> <keys2>

Implement the two aforementioned commands in src/api/range_search.c.
Note that for the command b, you are not allowed to store the output of the
command f in an array and subsequently print it.

For this purpose, you should read and understand, in particular, the follow-
ing header and source files:

e common/common.h: page (node) and key structure definitions.

e api/search.c: API for looking up a key in the index.

btree/search_tree.c: recursively search the tree for a key.

btree/search_leaf.c: search for a key in a leaf node.

btree/find_child_page.c: to traverse down the tree for a key lookup.

Your solution code may call or adapt any of the existing functions or struc-
tures in the original source code, but you may not modify them in any way.



4 Testing

For your convenience, we have provided you with sample tests and their cor-
responding outputs in the folder tests. To see if your implementation of the
commands f and b run correctly on the test files, type:

e make test-range
e make test-range-rev

Each test matches your solution output with our reference output and if
there is no difference, your implementation will pass the test. In addition to the
provided test cases, you must devise tests (of your own) that run on different
datasets (i.e., documents) of your choice and different argument values. Also,
consider corner cases like invalid inputs, non-existent words, etc.

5 Getting Started

To jump-start your implementation, you should:
e Run the demo and make sure you understand the tree structure.
e Study the important data structures defined in common.h.

e Understand how the basic search (in btree/search_tree.c) works.

6 Final Deliverable

In an archive (named P3_<AndrewID>.zip) add your modified range_search.c
(in addition to any other supplementary .c files that are part of your solution).
If you will alter the Makefile, please make sure to include your updated version
as well.

7 Getting Help

You can get help by visiting the professor and the TA during their office hours
or by appointment. You can also post your questions on Piazza [].

8 Late Policy

If you hand in on time, there is no penalty.

e 0-24 hours late = 25% penalty.

e 24-48 hours late = 50% penalty.

e More than 48 hours late = you lose all the points for this project.

Note: You can use your grace-days quota. For details about the quota,
please refer to the course syllabus.

! http://piazza.com/qatar.cmu/spring2018/15415/home


http://piazza.com/qatar.cmu/spring2018/15415/home

