
15-440: PROJECT 2

SYNCHRONIZATION AND REPLICATION IN

FILE STACK DISTRIBUTED FILE SYSTEM

ASSIGNED DATE: 12 OCT 2015
FINAL DUE DATE: 1 NOV 2015

LEAR NI NG OBJ ECTI VE

Project 2 applies the theory of two important aspects of distributed systems: synchronization

and replication. The learning objective of this project is two-fold:

1. Examine and apply synchronization algorithms that enable correct and consistent

sharing of common resources.

2. Apply intelligent replication strategies for load-balancing and performance.

PROJ EC T OBJ E CTI VE

File Stack (Project 1) was described as a distributed file system which allows clients to read or

write files on remote storage servers. Two important aspects of such file systems are to:

1. Ensure correctness when multiple clients read/write: This problem is known as

maintaining “consistency”. You will now maintain locks for reader and writer clients. Since

reads do not change the file, you can allow as many readers as possible to access the file at

the same time. However, if a writer has to write to a file, you have to ensure that there are no

other readers or writers who have locked the file. This concept is referred to as read-write

locks. In addition to ensuring basic consistency, you will also solve the unfairness problem

that manifests while ensuring consistency.

2. Improve performance by smart-allocation of files across multiple servers: We solve this

problem by dynamic replication of files. Instead of all clients fetching a file from one storage

server, we can now parallelize – and hence improve read/write times – by redirecting clients

to different replicas. It also aids in load-balancing of storage servers: many clients who access

a very popular file will now not go to a single storage server.

CON CEP TU AL A RC HI TE CT U RE

Naming Server

Client 1 Storage Server 1

Client 2 Storage Server 1

Client m Storage Server m

FIGURE 1: ARCHITECTURE OF FILE STACK (PROJECT 1)

The conceptual architecture of File Stack system, shown in Figure 1, remains the same as

that of project 1:

1. The clients will contact the naming server to access files.

2. The naming server will redirect the clients towards storage servers.

3. The clients will read/write files on storage servers.

However, in this project you will: (1) make sure that the files are consistent and (2)

implement a replication policy.

SYS TE M DES C R I PTI ON

In this section, we describe the functionalities that you will implement and the nature of the

protocol to ensure consistency and reliability. You will implement two main functionalities:

consistency and replication.

CONSISTENCY

You will implement a scheme to ensure consistency in distributed systems called “read-write

locks”. The main concept is for reader and writer clients to grab locks before performing

operations, and release them once these operations are done. If some other client already

owns a lock, this means that the file is currently being accessed by that client. In such

a case, it is possible for the file to become inconsistent if more than one client accesses

the file at the same time. For example, if one writer is modifying a part of a file, and another

writer modifies an overlapping part, then the file becomes inconsistent. The goal in this

project is to avert the occurrence of such a scenario (and alike) via ensuring consistency

when multiple clients are present. You will implement and design algorithms that achieve that

goal.

In particular, you will implement coarse-grained locks (similar to Google Chubby). Here, the

user will ask for an exclusive lock or a non-exclusive lock from the naming server for

proceeding with a write or a read, respectively. As such, you have to provision two more

methods in the Naming Server (Service interface).

READER OPERATION:

A reader will grab a non- exclusive lock to a file before reading, and will release the lock

once it is done. While one reader is reading the file, you will allow other readers to

concurrently read the file (i.e., other readers will also be able to grab non-exclusive lock to the

file). This is because read operations do not modify files, and hence, cannot cause

inconsistencies. Nonetheless, simultaneous reads to a file can decrease the time taken for

reading the file by multiple readers (due to avoid waiting each other), and accordingly

improving performance.

WRITER OPERATION:

A writer will grab an exclusive lock to a file before writing, and will release the lock once the

operation is completed. In order to keep the file consistent, a writer can successfully grab the

lock only when:

1. None of the readers are reading, or

2. None of the other writers are writing.

LOCKING A FILE/DIRECTORY IN THE HIERARCHY OF THE PATH:

Consider writing to a file in the absolute path /home/users/student1/work/project2.txt. While

obtaining a write lock to the file, you have to make sure that:

1. No other reader or writer is operating on file project2.txt

2. No writer is modifying the hierarchy of directory. For example, consider a scenario

where client 1 is trying to rename sub-directory “work” to “play”, and client 2 is writing to

project2.txt. Then client 2 should write – after client 1 is finished – to the new location

/home/users/student1/play/project2.txt (and not to

/home/users/student1/work/project2.txt). The likelihood of inconsistencies in DFSs renders

increasingly high if whole directory paths are not locked. You will avoid inconsistencies in

your File Stack by:

1) Obtaining non-exclusive locks to all the directories in a given path, and

2) Obtaining an exclusive lock for the file to be altered (e.g., project2.txt in the above
example).

Such a strategy will ensure that writers do not introduce inconsistencies in your file system.

For readers, you will also follow almost the same strategy: you will lock all the directories

and the file in the path by using non-exclusive locks. By applying this approach, you will not

allow any writer (similar to client 1 above) to rename or delete a directory when a reader

is reading.

Finally, be aware of deadlocks while locking a hierarchy of directories/files. You have to lock

different directories and a file in a path. You might obtain locks to some and fail in getting

locks to others. Design a mechanism that precludes deadlocks.

REPLIC ATIO N:

The second problem is to improve the performance through replication. The problem is

motivated from the type of access-pattern to files that are seen in normal file systems and

distributed file systems. Some files have a lot of requests (e.g., system log files), while

others are very rarely accessed (e.g., some remote photos in a user’s home directory). We

refer to the former as hot-files, and the latter as cold-files. In distributed systems, if there

are a lot of requests attempting to read/write to one hot-file, the networking and processing

loads on the storage server that stores the hot-file is very high, while that of the storage

servers that host only cold-files are rarely utilized. Consequently, the waiting queue for

accessing the hot-files becomes very large, and might demonstrate a bottleneck. You will

provide a solution to avoid such potential bottlenecks through replication.

REPLICATION POLICY:

The naming server maintains a counter that keeps track of the number of requesters to a file.

This information will be useful to measure the hotness of a file (e.g., the larger the number of

requesters to a file; the higher the hotness of the file). To avoid stressing a replica as well as its

hosting storage server, you will scale replicas linearly as the number of requesters increases.

Specifically, you can set the number of replicas per a file as follows:

num_replicas = ALPHA * num_requesters

where ALPHA is a positive constant. By controlling ALPHA, you control the number of replicas

per file. In addition, you would want to limit the replicas of a file. For that sake, you can

maintain a REPLICA_UPPER_BOUND, and avoid replicating a file whose number of

replicas has exceeded this threshold. In particular, you can now set the number of replicas

per file as follows:

num_replicas = min(ALPHA * num_requesters, REPLICA_UPPER_BOUND)

This fine-grained control of replication will alter the number of replicas even upon a change of

one or two requesters. This might add to an already large overhead of dynamic replication

(what we are essentially implementing). To enhance the policy, you can rather apply a

coarse-grained approach by rounding the number of replicas to the next integer that is a

multiple of 20 (as an example). That is,

Num_requesters_coarse = integer that is greater than or equal to

num_requesters and is a multiple of 20

Afterwards, you can compute the number of replicas as follows (this is the final formula

that you should implement):

num_replicas = min(ALPHA * num_requesters_coarse,

REPLICA_UPPER_BOUND)

Figure 2 shows an illustrative graph that demonstrates how the number of replicas for a file

changes upon changing the number of requesters.

FIG URE 2 : LINEA R REPLI CA TIO N POLICY W IT H UPPER -
B OU ND : THE NUMB ER OF REPLICA S SCA L E LIN EA R LY WIT H
TH E NU MB ER OF R EQU ES TE R S

READ-REQUEST HANDLING FOR HOT-FILES:

Simply put, the server performs load-balancing by randomly redirecting requests to replicas.

WRITE-REQUEST HANDLING FOR HOT-FILES:

You will implement an invalidation-based policy. Specifically, during a write call, you will

invalidate all-but-one replicas, and subsequently write on the remaining replica (the left file).

Keep in mind that if you are to write to a replicated file, you have to wait for every reader or a

writer (if any) to release their/its lock(s).

DESI GN A ND I M PLEME NT ATI O N GUI DELI N ES

In this project, you will improve your Project 1 to add concurrency and replication. Hence, it is

vital that basic components of project 1 (RMI, storage and naming) are working well.

FILE CONCURRE NCY A ND S YNCHRO NIZATION

The first important part in implementing correct synchronization is to provide each

file/directory with a capability to lock. But where do you implement the lock? Do you

implement it at the naming server? Or do you implement it at the storage server where the

file resides? How would you ensure that locks work with replicated files (second part of this

project)? First think about these questions.

The second design decision is regarding queues. Recall that there are readers and writers

waiting to access a file. A writer can lock only when there are no readers: what happens

when multiple readers request the file – one after another? Will the writer ever get a

chance to lock the file for writing?

The third decision is ensuring the ordering of reads/writes. A simple way is FIFO: the first

request (read/write) occurs before the second, second before the third, and so on. However,

note that there is no ordering between reads and writes. This compromises the exact

ordering, but helps improve the performance of distributed systems: all reads can go on

together even if there is one write in-between. For some systems (Google search for
instance), this works perfectly fine (Read the section 7.3.1 “Eventual consistency” in the

Tanenbaum textbook). All reads should be in FIFO, and all writes should be in FIFO. How do

you ensure the order of reads and writes? How are the requests queued?

REPLICATION

Replication introduces whole new range of challenges. The exact logic of replication is not too

complicated. However, remember that you have to copy files from storage servers to

others. This might require ensuring that directory hierarchy for a file is exactly created (but

do not overwrite the files that already exists in sub-trees) as in the original storage server.

The second issue is to re-think file functionalities. What will happen if you read a file? How do

you write a file, and update all replicas at different storage servers? How do you handle

file/directory deletions?

STA RTE R CO DE

Please use the code in P2_StarterCode.zip

The starter code is an extension of the starter code for project 1. The starter code includes

complete replacements for the apps/, test/, and conformance/ directories, as these are all

entirely the staff's responsibility, and are affected by the changes going from Project 1

from Project 2.

The main features of the starter code are as follows:

• The build/ and client/ directories are unaffected, and are included just for completeness.

• The naming/ and storage/ directories contain only the new .java files for the updated
Command and Service interfaces. These files are meant to replace the existing ones
that you have. You should copy your implementations of the interfaces from project 1,

and edit them to conform to the new interfaces. There are only a few new methods

– lock and unlock - in Service, and copy in Command.

• The unit/ directory is not included. You should copy your own, if you want to use the
unit tests that you already have.

• The rmi/ directory is not included. It is completely unaffected, and you should copy
your own rmi code into this directory.

• The common/ directory is not included, because there is only one file in there. It does
change, but most of it stays the same as in project 1. You should copy your project 1
version, and then make the Path class implement Comparable for project 2. The
purpose of this is to allow applications to pick a locking order when taking multiple locks

– the order on the paths will help to prevent deadlocks. A file “NOTE” is included with
the starter code to give you a starting point in doing this, but if you choose to use it, you
should copy the method skeleton in “NOTE” into your own copy of Path.java.

TES T CO DE

We have also provided test code. The test cases test if your code is conforming to the above

design guidelines, and to check if the implementation is correct. Please note that this is a

service offered to help you design and test faster. You are solely responsible to make

sure that your code works perfectly. During grading, we will also use other test cases to

make sure that your project is working as expected.

We have also provided “apps” that will let you use your distributed file system using

command-line.

Q&A

We use Piazza as a platform for asking questions and receiving answers. Posting your
questions on Piazza will help the whole class benefit and will certainly avoid redundancy.
Find our Piazza page at: https://piazza.com/qatar.cmu/fall2015/15440/home

DELI VERABLE

As a final deliverable, you should submit an archive containing the source code for the
RMI library, naming server, storage server, and test cases in separate directories..

HAN DI NG I N YO UR SOL U TI ON

Submit your code using the AFS file system: /afs/qatar.cmu.edu/usr10/mhhammou/
www/15440-f15/handin/project2/userid/, where userid is your andrew user id.

LATE POLI C Y

• If you hand in on time, there is no penalty (duh!).

• 0-24 hours late = 25% penalty.

• 24-48 hours late = 50% penalty.

• More than 48 hours late = you lose all the points for this project.

NOTE: You can use your grace-days quota (which is 4 days). For more details on

the policies associated with your grace-days quota, please read the syllabus.

https://piazza.com/qatar.cmu/fall2014/15440/home

