
15-440: PROJECT 2

SYNCHRONIZATION AND REPLICATION IN 

DISTRIBUTED FILE SYSTEM 

IMPLEMENTATION NOTES 

 ASSIGNED DATE: 12 OCT 2015 
FINAL DUE DATE: 1 NOV 2015 

S U MMA R Y OF C H A N G E S W I T H R ES P EC T T O P R OJ E C T 1 

The naming server supports file and directory locking. The Service interface therefore has two new 
methods: lock and unlock. Each node in the directory tree on the naming server now has a read-write lock. 
Locks for a path are always taken in order from root to final node. Threads requesting the lock are granted 
it in first-come first-serve order, with the exception that threads requesting shared access are granted the 
lock at the same time (if there is a block of threads in the queue all requesting shared access, then when 
one of them gets shared access, they all do, until the next thread requesting exclusive access, or until the 
end of the queue). 

The naming and storage servers support replication. Read and write accesses are noted on the naming 
server when file lock requests occur. The storage server Command interface provides the new copy 
method to support replication. 

Path objects now implement Comparable. This is meant to allow an application to choose a locking order if 
multiple locks need to be taken. All applications must take locks in the order defined by Path.compareTo. 
See the big comment by that method for further explanation. 

StorageServer now has an additional constructor StorageServer(File, int, int), which takes two port 
numbers to force the client/storage and command interfaces to use the given ports. 

LO C K I N G 

Naming server methods should not all be synchronized anymore. The read-write locks now provide most 
of the mutual exclusion needed. There are a few exceptions, however. A student that leaves all methods 
synchronized is not relying on the read-write locks. 

Locking must be done carefully. For example, it is not acceptable to traverse a path and get a list of 
directory tree objects along that path, and then lock each one. This is because if the parent of an object 
remains unlocked, another thread can unlink the object from the tree after the path is traversed, but before 
the object is locked. Then, the locking thread has locked an object that no longer exists. When locking, it is 
necessary to lock an object, then consult its child list, and then attempt to lock the next object. Locking an 
object should prevent its child list from being modified (at least by well-behaved clients). 



It is also important to unlock all objects that have been locked when locking fails. For example, if three 
components are locked before it is discovered that the fourth does not exist, then those three components 
must all be unlocked. 

It is desirable, but not necessary, to make the locks interruptible. This is because when the naming server 
is shut down, a large number of service threads may still be pooled in lock queues. It is better to stop these 
threads as soon as possible, instead of permitting them to take the locks and continue performing 
operations on naming server data structures. 

External control of locks is deliberate. This allows an external tool to take a lock, perform several 
operations atomically, and then release it. Without explicit external locking, complex atomic operations 
cannot be performed by a client. 

Attempting to take the same lock twice for reading can result in deadlock if another client tries to take the 
lock for exclusive access in between the two attempts. 

Taking a lock for shared access on a directory ensures that its child list will not be altered, but does not 
ensure that the children will not be changed. A subdirectory's child list can be altered, and a file can be 
written. Taking a lock for exclusive access on a directory ensures that neither it nor the entire 
subdirectories under it are being accessed in any way by any client. 

All the above statements concerning locking assume that it has been implemented correctly, and that all 
clients are well-behaved. It is the implementor's responsibility to ensure this. Operations that modify a file 
or directory should lock that file or directory for exclusive access. Operations that work on an entire 
directory tree at once should lock the root for exclusive access. Operations that read the state or contents 
of one file or directory should take the lock on that object for shared access. 

R E P L ICAT IO N 

Since the naming server has no good way to measure actual read and write requests on the storage 
servers, it considers a lock for shared access to be a read, and a lock for exclusive access to be a write. 

During replication, the naming server should allow threads other than the current reader to read existing 
copies of the file. It is acceptable to make the reader that caused the replication wait for the replication to 
complete. However, the gold standard in this is to make replication asynchronous with all readers. Caution 
must be used if this is attempted however - if the asynchronous replication thread has to take the lock on 
the object for shared access, it is important that it will not go to the end of the lock queue when attempting 
to do this, but take the lock together with the current thread. It would be a mistake if the replication 
thread went into the queue after an exclusive access thread, which will invalidate the copy it has not yet 
created. 

The students should be careful about race conditions related to replication. A second reader should not be 
able to access a copy of a file that has not yet been completely downloaded by the server making the copy. 
On the other hand, if this other reader causes another replication, then it should not go to the same server 
that is still currently downloading a copy. 

Threads reading the same file may still access it concurrently, even though there are locks, because these 
locks allow shared access. It may still be necessary to make a few synchronized statements when these 
threads access shared server or per-file data structures. Depending on the design, this may be especially 
important in the code for replication. 



The storage server copy method should support large files - up to 2^31 bytes in size (file sizes in the file 
system are reported as longs). However, it is not practical to copy that many bytes at a time, in great part 
because the JVM cannot support an array whose size is not an int, or even one whose size is just very 
large. Therefore, the copy method should download one block at a time, where a block can be 1MB or 
some other size chosen by the implementor. 




