
15-440: Project 3

Clustering Data Points and DNA Strands Using MPI

School of Computer Science

Carnegie Mellon University, Qatar

Fall 2016

Assigned Date: October 25th, 2016

Due Date: November 14th, 2016

1



1 Intended Learning Outcomes
This project applies the theory of the popular programming model, Message Passing. The main

learning outcome of the project is to apply Message Passing Interface (MPI), a library standard
for writing message passing programs, to a popular real problem, namely cluster analysis using the
K-Means algorithm.

2 Project Objectives
The overall goal of this project is to get a clear understating on how to apply MPI to real

problems. We have chosen a clustering analysis algorithm (i.e., K-Means) due to its significance
and importance in various domains including, but not limited to, data mining and statistical data
analysis. For whatever domain our students will be in, the chances are that sooner or later they
will run into a clustering problem. The project potentially provides our students with a practical
experience augmented with a methodology for solving clustering and other similar problems on a
distributed system using MPI. The students will also conduct and analyze some scalability studies
on various degrees of parallelism and data set sizes.

3 Cluster Analysis
Cluster analysis or clustering is the task of assigning a set of objects into groups (called

clusters) so that the degree of similarity can be strong between members of the same cluster
and weak between members of different clusters. In short, clustering has to define some notion of
“similarity” amongst objects. The objective is to maximize intra-cluster similarity and minimize
inter-cluster similarity.

Clustering problems arise in many different applications such as visualization (e.g., visualizing
the stock market data to give individuals/institutions useful information about the market behavior
for investment decisions), data mining and statistical data analysis including machine learning,
pattern recognition, image analysis, information retrieval, and bioinformatics.

Among clustering formulations that are based on minimizing a formal objective function, per-
haps the most widely used and studied one is K-Means algorithm. Simply put, K-Means is an
iterative algorithm that attempts to find K similar groups in a given data set via minimizing a
mean squared distance function. Initial guesses of K means (m1, m2, . . . , mK) is initially made
(see Figure 1(a)). These estimated means are then used to classify the data set objects into K
clusters. Afterwards, each mean is recomputed so as to reflect the true mean of its constituent
objects (see Figure 1(b)). The algorithm keeps iterating until the recomputed means (almost) stop
varying (see Figure 1(c)).

(a) Initial Means (b) Recalculated Means (c) Final Clusters

Figure 1

In this project we will apply K-Means clustering to two different applications; data points in a
2D plane and DNA strands in biology.

2



4 Clustering Data Points
Consider a case of a data set composed of data points in d-dimensional spaceRd. In K-Means

clustering, we specify a set of n data points and an integer k. The problem then is to determine
a set of k points in Rd, called centroids, so as to minimize the mean squared distance from
each data point to its nearest center. In pseudo-code, it is shown by Alpaydin (Introduction to
Machine Learning, page 139) that K-Means essentially follows the following procedure:

Explained in plain English, K-Means roughly follows this approach:

1. We start by deciding how many clusters we would like to form from our data. We call this
value k. The value of k is generally a small integer, such as 2, 3, 4, or 5, but may be larger.

2. Next, we select k points to be the centroids of k clusters which at present have no members.
The list of centroids can be selected by any method (e.g., randomly from the set of data
points). It is usually better to pick centroids that are far apart.

3. We then compute the Euclidean distance (the similarity function with a data set of data
points) from each data point to each centroid. A data point is assigned to a cluster such that
its distance to that cluster is the smallest among all other distances.

4. After associating every data point with one of k clusters, each centroid is recalculated so as
to reflect the true mean of its constituent data points.

5. Steps 3 and 4 are repeated for a number of times (say µ ); essentially until the centroids start
varying very little.

The positive integer µ is known as number of K-Means iterations. The precise value of µ can vary
depending on the initial starting cluster centroids, even on the same data set.

In this project, you will provide sequential and parallel implementations of the above K-Means
algorithm with a data set of data points as input and k centroids as output.

3



5 Clustering DNA Strands
Bioinformatics involves the manipulation, searching, and data mining of biological data, and

this includes DNA sequence data. A strand of DNA consists of a string of molecules called bases,
where the possible bases are adenine (A), guanine (G), cytosine (C), and thymine (T). We can
express a strand of DNA as a string over the finite set {A, C, G, T}. String searching or matching
algorithms, which find an occurrence of a sequence of letters inside a larger sequence of letters,
or simply match two sequences of letters, is widely used in genetics (e.g., for studying various
phylogenetic relationships and protein functions). In many studies, we often want to compare
the DNA of two (or more) different organisms. One goal of comparing two strands of DNA is
to determine how “similar” the two strands are, as some measure of how closely related the two
organisms are. Similarity in such a scenario can be defined as a function F(. , .) of
the number bases in a strand subtracted from the number of changes required to turn
one strand into the other. For example, consider the following three DNA strands:

The similarity between S1 and S2 is denoted as F(S1, S2) and is equal to 18. On the other
hand, F(S1, S3) = 16. The K-Means algorithm, described in the previous section, can be applied
to DNA strands with this given similarity function F(. , .) to compare DNA of two or more
different organisms.

In this project, you will provide sequential and parallel implementations of the K-Means algo-
rithm with a data set of DNA strands as input and K centroids as output.

6 Implementation Guidelines
As stated earlier, in this project, you will provide sequential and parallel implementations for

K-Means with two types of data-sets; a data set of data points and a data set of DNA strands. For
simplicity we assume 2D data points. Furthermore, we assume that strands in the DNA data set
are equal in size, and that strands in the list of centroids are also equal in size to each other and
equal in size to every strand in the data set.

For the sequential implementation, use C, C++, or Java. For the parallel implementation,
you will provide an MPI-based version using MPICH2, a high performance and widely portable
implementation of the Message Passing Interface (MPI) standard (both MPI-1 and MPI-2). (Note:
since you’ll have to use C for the parallel implementation, it is recommended to also use C for the
sequential implementation (e.g. you may reuse some code)).

In addition, you have to write your own data set generator that generates a random number
P of DNA strands per cluster for k clusters (use any programming language you like), for a given
strand length l. We will provide you with a data set generator that generates a random set of 2D
data points.

Your sequential and MPI-based K-Means implementations should be tested and run on a data
set of 2D data points, generated by the given data set generator, and on a data set of DNA strands,
generated by your DNA strands data generator.

4



7 Experimentation and Analysis
Please conduct and provide the following:

• A comparison between your 2 different K-Means implementations in terms of performance
and development effort.

• Three scalability studies for your MPI version on:

– The number of processes with a fixed data set size (use only the data set of the 2D data
points for this study). Specifically, use 2, 4, 8, and 12 processes on 4 virtual machines
(VMs).

– The number of VMs with a fixed data set size (again, use only the data set of the 2D
data points for this study). Specifically, use 1, 2, 3 and 4 VMs with a fixed number of
processes (e.g., 8).

– The number of data points in your data set of the 2D data points with a fixed number
of processes (e.g., 8) and a fixed number of VMs (e.g., 4). Specifically, use 20 million,
30 million, and 40 million data points.

• A discussion on:

– Your experience in applying MPI to the K-Means clustering algorithm.
– Your insights concerning the performance trade-offs of MPI and sequential programming

with K-Means.
– Your scalability studies (a detailed analysis on the collected results should be provided).
– Your thoughts on the applicability of K-Means to MPI.
– Your recommendations regarding the usage of MPI for algorithms similar to K-means.

[Deliverables on the next page]

5



8 Deliverables
As deliverables, you must submit the following:

1. An archive containing the following:

(a) DNA data-set generator :
• Input:

– Number of clusters c
– Number of strands per cluster pk

– Length of DNA strand l
• Output:

– A file with c× pk DNA strands, separated by new lines:
∗ Sample output with l = 10:
GTGAAAGGTC
ACGTACCTTG
CACTAGGATC
. . .

(b) Four programs for the K-Means implementation (2 sequential programs for K-
Means data-points and DNA strands, and 2 parallel programs for K-Means data-points
and DNA strands):

• Input (via command line arguments):
– c: Number of clusters c
– t: Total number of points/strands provided
– i: Input file containing the data
– n: Number of iterations (if not provided, your program should stop as necessary)
– l: length of DNA strand (only applies for the DNA strands K-Means implemen-

tations)
∗ Sample program execution:
// Runs K-Means on a dataset of 100 points, 3 clusters,
// data from pointsGenerated.txt for 5 iterations
mpiexec -f <Machinefile> -n <Number of processes>

./executable -t 100 -c 3 -i pointsGenerated.txt -n 5

• Output: a file with the following information for each cluster ci (all separated by
new-lines):
– The final centroid value for ci

– The number of points/strands assigned to the cluster ci

∗ Sample output for 2D points (the above, separated by commas on each line):
// x-coordinate, y-coordinate, number of points
5.212, 9.880, 400
1.511, 3.201, 320
. . .

2. An article with a maximum of 5 pages (similar to research articles) that presents your solution,
findings, observations and analysis.

6



9 Handing In the Project
Submit your code using the AFS file system:
/afs/qatar.cmu.edu/usr10/mhhammou/www/15440-f16/handin/p3/userid/,

where userid is your Andrew ID.

10 Late Policy
• If you hand in on time, there is no penalty.

• 0-24 hours late = 25% penalty.

• 24-48 hours late = 50% penalty.

• More than 48 hours late = you lose all the points for this project.

NOTE: You can use your grace-days quota. For details about the grace-days quota, please refer
to the course syllabus.

7


