
15440 - Fall 2017

Project 1

Out: August 31, 2017

Design Report Due: September 14, 2017

Due: October 1, 2017

1

Contents

1 Project Objective 3

2 FileStack 3
2.1 Overview . 3
2.2 Functionalities . 3
2.3 Entities, Architecture, and Communication 4

2.3.1 Storage Servers - Naming Server Communication 5
2.3.2 Client - Naming Server Communication 5
2.3.3 Naming Server - Storage Servers Communication 6
2.3.4 Client - Storage Servers Communication 6

2.4 RMI Library . 6
2.5 Interfaces . 7

3 Recap 9

4 A Working Example 9

5 Implementation 10
5.1 The RMI Package . 11
5.2 The Naming Package . 13
5.3 The Storage Package . 13
5.4 The Common Package . 14

6 Test Suite 14

7 Tips 14

8 Q&A 15

9 Deliverables 15
9.1 Design Report Deliverable . 15
9.2 Final Deliverable . 15

10 Submission 16

11 Late Policy 16

2

1 Project Objective

The objective of this project is to apply the knowledge of client-server com-
munication and Remote Method Invocation (RMI) to build a distributed
�le system, which we refer to as Remote File Storage and Access Kit (FileStAcK,
or simply FileStack). RMI involves the creation of stubs and skeletons at client
and server sides, respectively which allow for transparent location, reading and
writing of �les maintained at networked computers. In RMI, the underlying
details are generally hidden from users, whereby a calling object can invoke a
method in a potentially remote node as if it is local.

2 FileStack

The following subsections will provide an overview of FileStack, followed by
descriptions of its inherent functionalities, entities, architecture, communication
between entities and the required RMI library and interfaces.

2.1 Overview

In this project, you will implement FileStack, a distributed �le system that
stores a vast amount of data (�les) which typically do not �t on a single machine.
Brie�y, the �les are physically stored on a set of servers called Storage Servers.
Users, referred to asClients, can create, delete, read, write, and list �les (among
others), all via using Remote Method Invocation (RMI). As a requisite step,
Clients need to identify Storage Servers that host the required �les. They do so
with the help of a mediator. Clients contact a Naming Server (in this project
we allow only one centralized Naming Server) which maps every �le name to
a Storage Server. The Naming Server is thus a repository of metadata or data
about data.

2.2 Functionalities

The operations (or functionalities) that are available to the Clients of FileStack
are:

1. CreateFile(path): create the �le referred to by path1.

2. CreateDirectory(path): create the directory referred to by path.

3. Read(path, o�, n): read n bytes of data from the �le referred to by path
starting at an o�set o�.

4. Write(path, o�, data): write n bytes of data to the �le referred to by path
starting at an o�set o�.

1Path is a string that refers to an absolute path (with "/" being the root) of a �le or a
directory in the Naming Server's directory tree.

3

5. Size(path): return the size, in bytes, of the �le referred to by path.

6. IsDirectory(path): return true if path refers to a directory.

7. List(path): list the contents of the directory referred to by path.

8. Delete(path): delete the �le or directory referred to by path.

9. GetStorage(path): get the Storage Server (or more precisely, a representing
stub) hosting the �le referred to by path.

In this project, you will implement all the above-listed functionalities except
the Delete(path) function, which is left as a bonus to implement.

2.3 Entities, Architecture, and Communication

Figure 1: Architecture of FileStack

The main entities in FileStack are: Clients, Naming Server, and Storage
Servers. A Client is the end-user of FileStack who wishes to perform opera-
tions on �les. We assume that a Client knows the path of a �le it wishes to
manipulate. The Naming Server is a critical entity in FileStack because it is
the means by which Clients locate �les stored at Storage Servers. It runs at a
pre-de�ned address that is known by both, Clients and Storage Servers. A Stor-
age Server physically stores �les in its local �le system. The project assumes
that a �le cannot be partitioned across Storage Servers (i.e., no �le striping is
applied) and that a Storage Server can host multiple �les.

FileStack is based on a client-server architecture as shown in Figure 1. In this
architecture, a client is a service requester and a server is a service provider.
Servers also behave as clients when requesting services provided by other servers.

4

For example, the Naming Server behaves as a client when requesting the ser-
vices of a Storage Server. In Figure 1, all forward arrows (arrows 2, 3, and
5) represent requests originating from clients to servers, and the corresponding
backward arrows represent the services provided by the servers in response.

It is evident from the arrows in Figure 1 that distributed systems entail a lot
of communication between its entities. FileStack is no exception. We will now
discuss the purpose of communication in FileStack and the communicating en-
tities.

2.3.1 Storage Servers - Naming Server Communication

Upon start-up, each Storage Server sends a list of paths (representing the �les
that it currently hosts) to the Naming Server, a process we denote as regis-
tration. The Naming Server then traverses this list and adds the paths to its
directory tree where each leaf node is a (�lename, Storage Server) tuple. During
the traversal, the Naming Server remembers paths of existing �les and ultimately
replies back to the Storage Server with a list of duplicate paths (see Section 5.3
for details on that). Figure 1 depicts this communication with arrows 1 and 2.
After registration by all Storage Servers, the Naming Server is deemed to be
capable of locating all �les stored at each Storage Server.

2.3.2 Client - Naming Server Communication

Arrows 3 and 4 in Figure 1 illustrate this communication. A Client contacts the
Naming Server whenever it needs to perform an operation on a �le. While some
operations cannot be directly handled by the Naming Server, in which case it
replies back with the Storage Server that hosts the �le, other operations can be
directly handled by it.

Operations requiring the content of a �le namely read, write and size, cannot
be directly handled by the Naming Server. When a Client wishes to perform
any of those operations, it �rst contacts the Naming Server to get the Storage
Server (or more precisely a representing stub) that hosts the �le. It does so using
the getStorage operation and, subsequently, communicates with the respective
Storage Server to handle the operation. In Figure 1, arrows 5 and 6 mark this
communication.

All the other operations namely createFile, createDirectory, isDirectory, list,
and delete, can be handled by the Naming Server without involving the Storage
Servers. This is because the Naming Server merely leverages its tree to handle
such operations without requiring �le contents. It also ensures the integrity of
the Naming Server's directory tree. Clients cannot create/delete �les/directories
on the Storage Servers without the awareness of the Naming Server. There-
fore, the Naming Server �rst updates its directory tree by adding/deleting a
�le/directory and then instructs the respective Storage Server to perform the

5

physical creation/deletion.

You have to create a design that supports the delete operation without actually
implementing it. The implementation of the delete operation is a bonus-question
in this project but a requirement in Project 2.

2.3.3 Naming Server - Storage Servers Communication

This communication is illustrated in Figure 1 by arrows 1 and 2. Upon start-up,
each Storage Server recursively lists its hosted �les and sends the resultant list
of paths to the Naming Server. As described earlier, we denote this process as
registration. In response, the Naming Server replies with a list of duplicate �les
(if any) which a Storage Server deletes from its local �le system. In addition, it
also deletes any directories that are rendered empty, a process known as pruning.

Besides their communication upon boot-strapping FileStack, the Naming Server
sends create and delete operations to Storage Servers on behalf of Clients after
changes to its directory tree have been successfully committed.

2.3.4 Client - Storage Servers Communication

Arrows 5 and 6 illustrate this communication that occurs when a Client wishes
to perform a read, write, or size operation, after retrieving the respective Storage
Server from the Naming Server (see Client â�� Naming Server Communication
above).

2.4 RMI Library

As explained earlier, Clients request the Naming and the Storage Servers to
perform operations (methods) on �les. The Naming Server also behaves as a
Client when it requests the Storage Server to perform create/delete operations.
The recipient server, in return, ful�lls requests by executing the operations' logic
and returning results. This implies that servers can transiently act as clients
when requesting the services of other servers. We use the terms client (with a
lower-case c) and server (with a lower case s) to denote any service requester
and provider respectively. For the rest of the document, we will also use the
term "invoking a method" when we actually mean "requesting to perform an
operation."

When a client invokes a method, it essentially invokes a remote method, hence,
the name Remote Method Invocation (since the method's logic resides on a
server). The client is only aware of the method's name, not where it actually
resides. To enable a client to execute a remote method, we would require an
RMI library. RMI library takes care of initiating client connections to the ap-
propriate servers and forwarding method invocations to them, thereby, making

6

them appear to clients as if the methods are implemented locally. At the recip-
ient servers, the RMI library receives client connections, invokes the requested
methods, and returns results. The servers execute the methods while being to-
tally oblivious to the fact that the invocations were initiated by remote Clients.
Thus, the RMI library helps masking the client-server communication.

An RMI library is based on the concept of Stubs and Skeletons. When a client
needs to perform an operation, it invokes a corresponding remote method via
an object called the "stub." The stub object, or simply the stub, is part of
the client and is responsible for handling the invoked method, be it local or
remote. If a method is local, the stub merely invokes a helper function that
implements the "logic" of the operation. On the other hand, if the method is
remote, the stub initiates a connection to the appropriate server (more precisely
the server's skeleton), marshalls2 the method name and arguments, transmits
the byte stream over the network, unmarshalls3 the result and returns it to
the client. Thus, stubs allow clientsto invoke local and remote methods alike,
leaving the underlying complexity associated with remote methods to the stub.

Skeletons are counterparts of stubs but reside reversely at servers. Each stub
communicates to a skeleton. A skeleton is an object responsible for listening to
multiple client connections, unmarshalling the byte stream, invoking the method
implementing the logic of the requested operation, marshalling the results, and
sending them back to the client.

2.5 Interfaces

A server usually declares all the methods it handles in interfaces. An interface
contains a subset of the methods that can be invoked by a particular client. For
example, the Naming Server declares two interfaces, one for methods that can
be invoked by Clients and the other for methods that can be invoked by Storage
Servers. Segregating declarations into multiple interfaces ensures that clients
can only invoke their permissible methods. In FileStack, the Naming Server
splits its method declarations across two interfaces:

• Registration : de�nes a single method, namely register, invoked by Stor-
age Servers upon bootstrapping FileStack.

• Service : de�nes the methods that can be invoked by Clients and handled
directly by the Naming Server. As described in Section 2.3, the methods
are: getStorage, isDirectory, list,createFile, createDirectory, and delete.

Similarly, Storage Servers split their method declarations into two interfaces:

2Marshaling is the process of converting a datum (e.g., an object) into a byte stream that
can be transmitted over a network.

3Unmarshaling is the reverse process of marshaling, whereby a datum or an object is
reconstructed from a byte stream.

7

• Command : de�nes two methods create and delete, which can be invoked
by the Naming Server whenever a Client requests any of the createFile,
createDirectory or delete operations.For any of these operations, the Nam-
ing Server essentially commands a speci�c Storage Server to alter its local
�le system accordingly.

• Storage : de�nes the methods that can be invoked by Clients and handled
only by Storage Servers. As described in Section 2.3, these methods are:
size, read and write.

For each interface, a stub and a corresponding skeleton are required. A
stub uses an interface to determine if an invoked method is remote or local,
and subsequently performs tasks as described in Section 2.3. The correspond-
ing skeleton uses the interface to verify if an invocation is legitimate (i.e., the
invoked method belongs to the interface). If so, the skeleton acts as described
in Section 2.3.

To create a stub, a client requires the following information: an interface and the
network address (IP and port) of the corresponding skeleton (or more precisely,
the IP address of the Storage Server at which the skeleton exists). Similarly,
to create a skeleton, a server requires the following information: an interface,
a class that implements the logic of the methods de�ned in the interface, the
server's IP address, and a port number. Essentially all skeletons belonging to a
server possess the same IP address but di�erent port numbers.

The Naming Server creates two skeletons, one for each interface. We call these
skeletons RegistrationSkeleton and ServiceSkeleton, which correspond to
the Registration and the Service interfaces respectively. In any distributed sys-
tem, stubs that communicate with a known server, such as the Naming Server,
are created by clients at boot-up. In other words, since the network addresses
of RegistrationSkeleton and ServiceSkeleton are prede�ned, each Storage Server
and Client, at boot-up, creates RegistrationStub and ServiceStub respectively.

Likewise, a Storage Server creates two skeletons, one for each interface. We
call these skeletons CommandSkeleton and StorageSkeleton, which corre-
spond to the Command and the Storage interfaces, respectively. A problem,
however, is that a Storage Server may run on any machine and its address (and,
thereby, the addresses of its skeletons) is not prede�ned. This implies that
neither Clients nor the Naming Server can create the corresponding stubs to
communicate with Storage Servers. To resolve this issue, each Storage Server
creates its CommandStub and StorageStub. During registration, the Storage
Servers transmit their stubs to the Naming Server along with their list of �les.
Hence, when a Client invokes the getStorage method, what the Naming Server
actually returns is the CommandStub of the Storage Server which hosts the
requested �le. Similarly, when the Naming Server needs to communicate with
a Storage Server, it uses the respective StorageStub.

8

3 Recap

Let us revisit the whole problem at a high level. The main issue is to enable
Clients to perform operations on �les stored on remote servers in a distributed
�le system. Technically, we refer to the act of performing an operation as
invoking a remote method. We denote a method as remote because the "logic"
of the method is implemented on remote servers, namely the Naming Server or
the Storage Servers. In order to trigger a method at a server and return its
results, we need stub and corresponding skeleton objects. A client may either
possess a stub (created at boot-up) or may have acquired it from the Naming
Server. A server creates its skeletons at boot-up using its pre-de�ned interfaces.

4 A Working Example

Consider the situation in which a Client wishes to perform a read operation on a
�le named "abc" (assume the name "abc" is of type String). To do so, the Client
requires StorageStub to communicate with StorageSkeleton of the Storage Server
hosting the �le "abc." So as a �rst step, it must contact the Naming Server to
get StorageStub. As such, it invokes getStorage(abc) using ServiceStub. Ser-
viceStub at the Client side connects to ServiceSkeleton at the Naming Server,
marshalls the method name (i.e., getStorage), argument types (i.e., String) and
argument values (i.e., "abc"), transmits the byte stream, unmarshalls the re-
sult (after �nally received from the Naming Server) and closes the connection.
ServiceSkeleton listens for incoming connections, accepts the new connection,
unmarshalls the incoming stream to identify the requested method, calls the
locally de�ned getStorage(abc) function, marshalls StorageStub object and
returns it to ServiceStub.

Now that the Client has StorageStub, the second step is to contact the Storage
Server. The Client invokes read(abc,0,10) using StorageStub which in return
communicates with StorageSkeleton. StorageStub and StorageSkeleton interact
in a similar manner as ServiceStub and ServiceSkeleton, and the Client eventu-
ally acquires a bu�er containing 10 bytes of data read from the �le "abc." The
entire example is demonstrated in Figure 2 (following page).

9

Figure 2: An example of a Client performing a read operation on �le 'abc'

5 Implementation

In this project you will be using the Java Programming Language. You are
provided with a starter code P1_StarterCode.zip that contains �ve primary
packages namely rmi, naming, storage, client, and common, which you must
implement to create a fully-functional distributed �le system (i.e., FileStack).
We recommend that you implement the packages in the following order, (1)
rmi, (2) common, (3) naming, and (4) storage. The client package has been
fully implemented for you.

In this section, we provide you with design considerations for successfully imple-
menting each package. In addition, it is important that you read the package-
info document under each package prior to implementing the package.

10

5.1 The RMI Package

Figure 3: Sockets and Multi-threading

The RMI package is your RMI library. The RMI library consists of two
generic (parametrized) classes:

Skeleton and Stub. Both, the Skeleton and the Stub classes take a remote
interface4 as a parameter. They de�ne and implement methods that are com-
mon to all skeletons and stubs in FileStack (e.g., constructors to instantiate
skeleton/stub objects as well as start() and stop() methods to start and stop
skeletons/stubs, respectively).

The connection and communication between stubs and skeletons are carried out
using Java API for TCP socket5 programming. The skeleton is multi-threaded.
When it is started using the start() method, its main thread creates a listen-
ing socket (see Figure 3), which waits for incoming client connections. Once
a client's request is received, the skeleton accepts the request, creates a new
thread (or what we call a client thread) to service the request, and instantiates
a new service socket within the client thread to handle further communication
with the client. Figure 3 illustrates the concept of stubs and skeletons using
multi-threaded socket programming.

A stub is implemented in Java as a dynamic proxy (java.lang.reflect.Proxy).
A proxy has an associated invocation handler. When a method is invoked on
a proxy (stub) object, the method name and parameters are encoded and dis-
patched to the invoke method of the invocation handler. For instance, in Figure
2, when the client invokes the method getStorage on the proxy ServiceStub,
the method name and arguments (i.e., getStorage and "abc") are encoded and
dispatched to the invoke method of the ServiceStub's invocation handler.

4A remote Interface is a Java interface in which each method declared in it throws an
exception of type RMIException.

5A socket is an end-point in a bi-directional communication between two processes running
typically on two separate computers on a network. Each socket is bound to a di�erent port
number which is utilized by TCP to identify the data destined to the socket.

11

The invoke method checks whether the invoked method is local or remote. In
the case of a local method (i.e. a method that the proxy implements), the local
method is simply invoked and passed the arguments. In this project, local meth-
ods are equals(), hashCode() and toString(). The equals method determines
if two proxies were created for the same skeleton. HashCode returns the hash
code of a proxy object. toString prints information about a proxy. In the case
of a remote method, the proxy connects to the corresponding skeleton at the
server side, marshalls the method name, parameter types and values, and sends
the entailed byte stream. You can read more about implementing a dynamic
proxy at http://tutorials.jenkov.com/java-re�ection/dynamic-proxies.html.

The RMI library is best implemented in two phases:

Phase 1 : learn more about the two Java socket APIs (Socket and Server-
Socket) and dynamic proxies (java.lang.reflect.Proxy) to implement a ba-
sic stub-skeleton communication. Use ObjectOuputStream and ObjectInput-
Stream which allow writing and reading primitive data types of Java objects
(or referred interchangeably to as serializing data) to output and input streams,
respectively. At the end of this phase, a stub should be able to connect to a
skeleton, and send and receive objects. Similarly, a skeleton must be able to
accept several client connections, read objects and send back objects (including
exceptions).

You should make the server as robust as possible via handling various types
of exceptions and displaying meaningful messages whenever needed, so as to
avoid abrupt crashes. For example, if the stub fails to create an input stream,
it should throw an RMIException with a meaningful message. You should also
clean-up (i.e. close sockets and streams) whenever required.

Phase 2 : Now that you are able to send and receive serialized objects (using
ObjectInputStreams and ObjectOutputStreams), it is time to send and receive
more meaningful data. The stub should now check whether the invoked method
is local or remote using its de�ned interface. When the invoked method is local,
the stub simply invokes a corresponding locally implemented method (or what
we call an implementor method). On the other hand, when the invoked method
is remote, the stub sends the method name and parameter types and values
to the respective skeleton. The skeleton should receive them, invoke the cor-
responding method, which implements the necessary logic, and send back the
generated result to the stub. Exceptions that arise due to unsupported meth-
ods during unmarshalling, and the ones that are thrown by the implementor
methods should be communicated back to the client.

12

5.2 The Naming Package

The naming package contains the Registration and Service interfaces, as well
as the NamingServer class that creates the necessary skeletons and stubs and
implements the logic of all the operations handled by the Naming Server. For
the create operation, we leave the strategy of selecting a Storage Server to host
a new �le or directory up to you.

The Naming Server creates and maintains the FileStack directory tree, with
the top-level directory being the root represented by the path "/". While the
inner tree nodes represent directories, the leaves represent �les (or more pre-
cisely �le,stubs tuples). The Naming Server gradually builds its tree during
registration. After registration, the Naming Server uses its tree to handle op-
erations. It is important to design the directory tree in a way that allows the
Naming Server to easily look-up, traverse and alter the tree, as well as detect
invalid paths (e.g., a path that denotes a non-existing �le).

5.3 The Storage Package

The storage package contains the Command and Storage interfaces, as well as
the StorageServer class that creates the necessary skeletons and stubs and im-
plements the logic of all the operations handled by the Storage Server.

Each Storage Server has its own local �le system. The �les hosted by a Storage
Server are stored in its local �le system in a directory denoted as temporary
directory. A temporary directory and all its sub-directories and �les are part of
FileStack i.e. part of the Naming Server's directory tree. Each �le/directory at
a Storage Server has an absolute local path with respect to the root directory
of the Storage Server.

In other words, a local path dictates the location of a �le/directory at the
local �le system of a Storage Server. Paths we have been referring to so far in
the document are relative paths that dictate the locations of �les/directories on
FileStack. We call these paths FileStack paths.

FileStack paths refer to the directory tree of the Naming Server and are pre-
�xed with the root directory of FileStack (i.e., "/") followed by the temporary
directories of Storage Servers.
To exemplify, consider a �le f1.txt stored in a temporary directory, tmp, at Stor-
age Server, SS1, with an absolute path of /home/SS1/Public/tmp/sub_dir1/f1.txt.
Therefore, the local path at SS1 will be /home/SS1/Public/tmp/sub_dir1/f1.txt,
while the FileStack path at the directory tree of the Naming Server would be
/tmp/sub_dir1/f1.txt. Clients and the Naming Server know and use FileStack
paths only. The job of resolving (or mapping) FileStack paths into local paths
(and vice-versa) is the responsibility of Storage Servers.

During registration, the Storage Server recursively lists the contents of its tem-
porary directory and sends the list of local paths (of �les only) along with its

13

stubs to the Naming Server. The Naming Server maps the received local paths
to FileStack paths and sends back a list of duplicate �les for deletion. Duplicate
�les are �les that have been already registered and therefore exist in the Naming
Server's directory tree. For instance, during the registration of Storage Server
SS1, if the Naming Server encounters f1.txt sent by SS1 in its directory tree,
then f1.txt is deemed a duplicate �le.

In Java, directories and �les are represented as java.io.File objects. Pe-
ruse through the documentation of java.io.File to understand more the File's
constructors and methods.

5.4 The Common Package

This package contains the class Path that de�nes utility functions which manip-
ulate paths. These functions are used as helper methods by the Naming Server
and the Storage Servers.

6 Test Suite

We have provided four packages. Speci�cally, rmi, common, naming and stor-
age, containing test �les that test the corresponding package. We recommend
that you test your packages as you move forward. The test cases test if your
implementation conforms to the design speci�cations, and checks the correct-
ness of the implementation. Please note that this is a service o�ered to help
you design and test your code faster. You are solely responsible to ensure that
your implementation is �awless. During grading, we may use other test cases
to make sure that your project works as expected.

7 Tips

• Start early!

• Read about Java multi-threading and synchronization that is used to syn-
chronize accesses to shared variables. When multiple threads invoke a
method that alters shared variable(s), you must ensure that the method
is declared as synchronized.

• Learn more about Java libraries used to access and manipulate a �le sys-
tem and its constituent �les/folders.

• Read the package-info provided in each package to understand the pack-
age's functionalities and how to use or integrate it with the other packages.

• For each package of the four packages (i.e., the rmi, naming, storage, and
common packages), it is important to read the respective test �les found
under the conformance package. This will give you an idea on how to
design and implement a package.

14

• Do not defer testing until the end. Test your packages as you go.

8 Q&A

We use Piazza as a platform for asking questions and receiving answers. Posting
your questions on Piazza will help the whole class bene�t and will certainly avoid
redundancy. Find our Piazza page at:
https://piazza.com/qatar.cmu/fall2017/15440/home.

9 Deliverables

There will be two deliverables:

9.1 Design Report Deliverable

You have to submit the detailed design of the project in this report. The deadline
is Sep 14, 2017. The design document should contain the following sections:

1. A brief design of the project deduced from the starter code: The
starter code provides a framework for the project. Identify all the activities
that occur in the project (e.g., Naming Server starts up, Client requests a
�le for reading its content, etc). Draw sequence diagrams of these activities
(Note: A sequence diagram is a UML methodology for representing how
objects communicate and in what order). Do not elaborately discuss the
items that are already stated in comments (or java-doc).

2. Description of the logic of the unimplemented functionalities:
The starter code has many unimplemented functionalities. The missing
parts are spread over the starter code. You can identify them by search-
ing for parts of code that throw an "UnsupportedOperationException".
Discuss the logic that you plan to incorporate to implement these missing
functionalities. The description should discuss the logic in detail (includ-
ing trivial errors, such as the action taken if a null value is passed as an
argument to a function). Do not elaborately discuss in text; use appro-
priate �ow-charts and sequence diagrams, if and when needed.

9.2 Final Deliverable

A zip �le containing the source code. Please adhere to the same package and
directory structure as provided by the framework (i.e., RMI library, Naming
Server, and Storage Server, and test cases in separate directories). If you want
to alter this structure (for example, to improve the framework), please let the
instructor know. You need a written approval from the instructor before mod-
ifying the framework. You are; however, free to add �les within the existing
packages.

15

10 Submission

Submit your code using AFS (Andrew File System):
/afs/qatar.cmu.edu/usr10/mhhammou/www/15440-f17/handin/p1/userid /,
where userid is your andrew ID.

11 Late Policy

• If you hand in on time, there is no penalty.

• 0-24 hours late = 25% penalty.

• 24-48 hours late = 50% penalty.

• More than 48 hours late = you lose all the points for this project.

NOTE: You can use your grace-days quota. For details about the quota,
please refer to the syllabus.

16

	Project Objective
	FileStack
	Overview
	Functionalities
	Entities, Architecture, and Communication
	Storage Servers - Naming Server Communication
	Client - Naming Server Communication
	Naming Server - Storage Servers Communication
	Client - Storage Servers Communication

	RMI Library
	Interfaces

	Recap
	A Working Example
	Implementation
	The RMI Package
	The Naming Package
	The Storage Package
	The Common Package

	Test Suite
	Tips
	Q&A
	Deliverables
	Design Report Deliverable
	Final Deliverable

	Submission
	Late Policy

