
15-440: Distributed Systems

Rubrics of Project 1

School of Computer Science

Carnegie Mellon University, Qatar

Fall 2017

Common Package (Points: 10%)

Path class

RMI (Points: 40%)

 Multi-threaded servers (Points: 4%)

 All servers/skeletons should be multi-threaded. No clients should wait while another client is

waiting

 SkeletonTest (Points: 18%)

 Skeleton unmarshalls variables and marshalls return values correctly (Points: 2%)

 Skeleton links to the correct Class object (Points: 5%)

 Skeleton dispatches to the correct method for any invocation class (Points: 5%)

 Error/Exception checks (Points: 6%)

■ Trivial errors, such as passing null as parameters, should be rejected

■ Skeleton should reject RMI methods that do not throw RemoteException

■ Skeleton rejects non-matching class parameter and server object

 Stub Test (Points: 18%)

 Stub connects to skeleton (Points: 2%)

 Stub marshalls all types of arguments correctly and unmarshalls return result (Points: 2%)

 Stub can be created at a remote IP address and port (Points: 3%)

 Stub can be created with a given skeleton class (Points: 3%)

 Error/Exception checks (Points: 8%)

■ Code should check if skeleton has started

■ Stub should be created only from an interface

■ Cases where interface does not throw RemoteException should be rejected

■ Trivial errors, such as passing null as parameters, should be rejected

Storage server (Points: 20%)
 Registration Test(Points: 10%)

 Storage server should register to the naming server

 Storage server should prune empty directories

 FileAccessTest(Points: 5%)

 Size test

■ For Valid files

■ For Invalid files

■ For null args (trivial args)

 Read test

■ Should not be able to read directories

■ Reading empty file

■ null args (trivial args)

 Write test

■ Write to non-existent file should be rejected

■ Write a directory should be rejected

■ null args for file and/or data (trivial args)

 Write-local read

■ The file written through client should be same as local file stored on disk

 Write-Read OutOfBounds

■ Read beyond file size should not be allowed

■ Reading negative lengths should not be allowed

■ Writing files with negative offset should not be permitted 

Append test

 Directory tests(Points: 5%)

 File create Test

■ Should not be able to create root dir

■ File should be created directly under root directory

■ Creating directory with null args (trivial case) should not be allowed

■ Cannot create file/dir that is already present

■ Check if file is created with read/write perms

 Delete test

■ Client should not be able to delete root

■ Client should not be able to delete file/dir with null args (trivial case)

■ Client should not be allowed to delete a non-existing file/dir

■ Prune empty directories

 Naming server (Points: 25%)

 Contact tests (Points: 1%)

 Test if naming server has opened one port for registration and one for service

 Registration test(Points: 6%)

 Cannot register with null args (trivial test)

 Merge two storage server file meta data

 List files(Points: 6%)

 Cannot list with null args (trivial test)

 List non-existent file/dir

 Test listing files/dirs

 Create files/directory (Points: 6%)

 Cannot create file/dir with null args (trivial test)

 Cannot create root directory

 Cannot create file/dir under parent directory that does not exist

 Cannot create a file/dir with an already existing file/dir

 Stub retrieval tests(Points: 6%)

 Trivial tests

 Start two storage servers with initial set of files. Retrieve the storage server stub from naming

for those files. Check and see if they match

 Code Style (Points 5%)

 Method Comments, Block comments, Readability, Dead code, Code design

 Bonus (Points: 10%)

 Implementation of Delete functionality

