
15440 - Fall 2017

Project 4

Characterizing MapReduce Task

Parallelism using K-Means on the Cloud

Out: November 13, 2017

Due: November 27, 2017

15440 - Fall 2017

1



Contents

1 Summary & Intended Learning Outcomes 3

2 Project Objectives 4

3 Implementation Guidelines 4

4 Experimentation and Analysis 5

5 Final Deliverables 6

6 Submission 7

7 Late Policy 7

2



1 Summary & Intended Learning Outcomes

MapReduce is now a pervasive analytics engine on the cloud. Hadoop is an open
source implementation of MapReduce and is currently enjoying wide popularity.

Hadoop o�ers a high-dimensional space of con�guration parameters, which
makes it di�cult for practitioners to set for e�cient and cost-e�ective execu-
tion. In this project, you will implement the K-Means clustering algorithm using
Hadoop MapReduce and "characterize" the map phase parallelism accordingly.
For the sake of this project, map phase parallelism is de�ned in terms of two
Hadoop con�gurable parameters; the number of available map slots and the
number of map tasks running over the slots. Within the con�nes of MapReduce
(and this project), we de�ne the characterization of the map phase parallelism as
the process of observing, identifying and explaining various MapReduce runtime
responses to di�erent map task and map slot numbers. To this end, in addi-
tion to characterizing the map phase parallelism, you will compare and contrast
the performance of your MPI K-Means implementation (from P3) against your
Hadoop MapReduce K-Means implementation from this project.

In short, the learning outcomes of this project are as follows:

1. Apply MapReduce to a popular real problem, namely cluster analysis
using K-Means algorithm.

2. Characterize the map phase parallelism using the K-Means clustering al-
gorithm.

3. Compare and contrast your MPI and Hadoop MapReduce implementa-
tions of K-Means in terms of performance and development e�ort.

Handout continues on the next page

3



2 Project Objectives

The overall goal of this project is to get a clear understanding on Hadoop map
parallelism and how di�erent parallel implementations of the same algorithm
compare against each other. You will conduct and analyze some scalability
studies on various degrees of parallelism for K-Means. The project will provide
students with: (1) deep insights onto how parallelism a�ects performance in
large-scale settings, and (2) a practical experience augmented with a method-
ology for solving clustering problems (and alike) on a distributed system using
MapReduce.

3 Implementation Guidelines

In this project, you will provide a MapReduce implementation for K-Means with
two types of data sets; a data set of data points and a data set of DNA strands
(as was done in P3). Please use the datasets you generated in P3 to run and
test your MapReduce K-means implementation. For a complete explanation of
the K-Means algorithm, please refer to the write-up of P3.

For this project, use the 4-VM virtual cluster (which can be deemed as a
private cloud) provided to you in P3. We have already installed and tested
Hadoop 0.20.2 for you. Hence, the clusters are ready to run your Hadoop
MapReduce code.

Handout continues on the next page

4



4 Experimentation and Analysis

After implementing K-Means using Hadoop MapReduce, please conduct exper-
iments and report on the following:

• A comparison between your 3 di�erent K-Means implementations (the
sequential and the MPI ones from P3, and the MapReduce one from this
project) in terms of performance and development e�ort.

• Three scalability studies. In particular:

� A scalability study on the number of map slots per each virtual ma-
chine (VM) for �xed cluster, data set and HDFS block sizes. Specif-
ically, use 1, 2, and 4 map slots per each VM on your 4-VM cluster,
with a data set size of your choice (use only the data set of the 2D
data points) and 64MB HDFS block size.

� A scalability study on the HDFS block size per �xed data set size,
cluster size and map slot value. Speci�cally, use 32MB, 64MB and
128MB HDFS block sizes on your 4-VM cluster with 2 map slots per
each VM and a data set size of your choice (again, use only the data
set of the 2D data points).

� A scalability study on the number of VMs per �xed data set size,
HDFS block size, and map slot value. Speci�cally, use 1, 2, 3 and 4
VMs with 64MB HDFS block size, 2 map slots per a VM and a data
set size of your choice (again, use only the data set of the 2D data
points).

Note that these scalability studies are, in essence, the methodology we
are using to characterize the map phase parallelism. You should report on
your observations concerning the obtained parallelism (in each of the scala-
bility studies) and the consequent overall in�uence on Hadoop MapReduce
performance for K-Means. For instance, you should explain why a larger
number of map tasks can sometimes expedite performance while at other
times it might degrade performance.

• A discussion on:

� Your experience in applying MapReduce to the K-Means clustering
algorithms.

� Your insights concerning the performance trade-o�s of MPI and MapRe-
duce with K-Means.

� Your thoughts on the applicability of K-Means to MapReduce.

� Your recommendations regarding the usage of MapReduce for algo-
rithms similar to K-Means.

5



5 Final Deliverables

As �nal deliverables, you should submit:

1. An archive containing a fully tested and debugged code for your MapRe-
duce K-Means implementation. Speci�cally, you must submit:
Two programs for the K-Means implementation; one for the 2D
data-set and one for the DNA strands data-set:

• Input:

� The Input directory containing the data

� The Output directory containing the data

� Total number of points/strands provided

� Number of clusters

� Number of iterations (if it's given as 0, your program should
stop as necessary)

� l: length of DNA strand (only applies for the DNA strands K-
Means implementations)

∗ Sample program execution:

// Runs K-Means on a dataset of 100 points, 3 clusters,

// and 5 iterations

$ hadoop jar 2DPoints.jar 2DPoints /user/hadoop/2D/input

/user/hadoop/2D/output 100 3 5

• Output: a �le with the following information for each cluster ci (all
separated by new-lines):

� The �nal centroid value for ci
� The number of points/strands assigned to the cluster ci

∗ Sample output for 2D points (the above, separated by com-
mas on each line):

// x-coordinate, y-coordinate, number of points

5.212, 9.880, 400
1.511, 3.201, 320
...

Note: the output �le can either be on HDFS or on the local
directory of the JAR program. In case it's the former, please
make it clear where exactly it will be stored.

2. An article with a maximum of 5 pages (similar to research articles) that
presents your solution, �ndings, observations and analysis.

6



6 Submission

Submit your code using AFS (Andrew File System):
/afs/qatar.cmu.edu/usr10/mhhammou/www/15440-f17/handin/p4/userid /,
where userid is your andrew ID.

7 Late Policy

• If you hand in on time, there is no penalty.

• 0-24 hours late = 25% penalty.

• 24-48 hours late = 50% penalty.

• More than 48 hours late = you lose all the points for this project.

NOTE: You CANNOT use your grace-days quota. For details about the
quota, please refer to the syllabus.

7


	Summary & Intended Learning Outcomes 
	Project Objectives
	Implementation Guidelines 
	Experimentation and Analysis
	Final Deliverables
	Submission
	Late Policy

