15-440 Distributed Systems Recitation 10

Tamim Jabban

Project 3

- •Using Message Passing Interface (MPI) to apply the K-Means algorithm
- Due date: November 12th
 - You should be working on the parallel versions now! ③

Carnegie Mellon University Qatar

Agenda

- Today, we'll be re-implementing the Parallel
 Sum program from last week
- We'll use collective routines to do so

Carnegie Mellon University Qatar

Collective Communication

- Collective communication allows you to exchange data among a group of processes
- It must involve <u>all</u> processes in the scope of a communicator
- The communicator argument in a collective communication routine should specify which processes are involved in the communication
- Hence, it is the programmer's responsibility to ensure that all processes within a communicator participate in any collective operation

Patterns of Collective Communication

- There are several patterns of collective communication:
 - 1. Broadcast
 - 2. Scatter
 - 3. Gather
 - 4. Allgather
 - 5. Alltoall
 - 6. Reduce
 - 7. Allreduce
 - 8. Scan
 - 9. Reducescatter

Carnegie Mellon University Qatar

Patterns of Collective Communication

- There are several patterns of collective communication:
 - 1. Broadcast
 - 2. <u>Scatter</u>
 - 3. <u>Gather</u>
 - 4. Allgather
 - 5. Alltoall
 - 6. <u>Reduce</u>
 - 7. <u>Allreduce</u>
 - 8. Scan
 - 9. Reducescatter

ة کارنىچى مىلون فى قطر **Carnegie Mellon University Qatar**

Scatter and Gather

- <u>Scatter</u> distributes distinct messages from a single source task to each task in the group
- *Gather* gathers distinct messages from each task in the group to a single destination task

int MPI_Scatter (void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Gather (void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

Carnegie Mellon University Qatar

Reduce and All Reduce

- *<u>Reduce</u>* applies a reduction operation on all tasks in the group and places the result in one task
- <u>Allreduce</u> applies a reduction operation and places the result in all tasks in the group. This is equivalent to an MPI_Reduce followed by an MPI_Bcast

int MPI_Reduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Allreduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Carnegie Mellon University Qatar