
15-440
Distributed Systems

Recitation 6

Tamim Jabban

Project 2

• Involves building on your Project 1 Distributed File
System (DFS): FileStack

• P2_StarterCode: Copy files into your P1 folder

• Release Date: October 4th

• Due date: October 21st

Project 1: Recap

• Applied the knowledge of client-server communication and
Remote Method Invocation (RMI) to build a Distributed File
System denoted as FileStack

• Employed stubs and skeletons to mask communication,
thereby transparently locating and manipulating files stored
remotely at a cluster of machines

Entities & Architecture
• Storage Servers (SSs)

• Each SS stores physically files to share in a directory (denoted as temporary
directory) in its local file system

• Naming Server (NS)
• Stores metadata about all shared files in the form of a mapping from filenames to

storage servers (like DNS)

• Clients
• Perform operations on files (e.g., write, read etc.)

• Architecture
• Based on client-server architecture

Communication b/w Entities

Request-Reply
Communication Paradigm

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

5

6

Registration

Duplicate Files, Create, Delete

CreateFile, CreateDirectory,
IsDirectory, Delete, List,
GetStorage

Results, Storage Stub

Read, Write, Size

Results (of Read, Write, Size)

1

2

3

4

5

6

File Correctness & Consistency

• Did we allow multiple clients to write on a file?
Yes!

• Did we allow a client to read a file under modification?
Yes!

Storage
Server

Shared
File

abc.txt

Client A
Write to file abc.txt

Write to file abc.txt
Client B

P1

P2

Client C
Read from file abc.txt

P3

Project 2 Objectives

1. Devise and apply a synchronization algorithm that:

▪ achieves correctness while sharing files

▪ and ensures fairness to clients.

2. Devise and apply a replication algorithm that:

▪ achieves load-balancing among storage servers

▪ and ensures consistency of replicated files.

Project 2 Objectives

1. Devise and apply a synchronization algorithm that:

▪ achieves correctness while sharing files

▪ and ensures fairness to clients.

2. Devise and apply a replication algorithm that:

▪ achieves load-balancing among storage servers

▪ and ensures consistency of replicated files.

Logical Synchronization of Readers and
Writers

Mutual Exclusion

1. Reader:
▪ Reader is a Client who wishes to read a file at a SS

▪ Reader first requests a read/non-exclusive/shared lock

2. Writer:
▪ Writer is a Client who wishes to write to a file at a SS

▪ Writer first requests a write/exclusive lock

3. Order:
▪ Readers and writers are queued and served in the FIFO order

Read Locks

• Readers request the NS for read locks before reading files

• Readers do not modify contents of a file/directory

• Multiple readers can acquire a read lock simultaneously

• Readers unlock files once done

Write Locks

• Writers request the NS for write locks before
reading/writing to files

• Writers can modify contents of files/directories

• Only one writer can acquire a write lock at a time

• Writers unlock files once done

Write Locks
• NS grants a write lock on a file if:

• No reader is currently reading the file

• No writer is currently writing to the file

• Assume a writer requests a write lock for project2.txt:

/FileStack/users/student1/work/project2.txt

• NS applies read locks on all the directories in the path to prevent modifications

• NS then grants a write lock to the requestor of project2.txt

Service Interface

• Two new operations available to Clients:

• LOCK(path, read/write)

• UNLOCK(path, read/write)

Project 2 Objectives

1. Devise and apply a synchronization algorithm that:
▪ achieves correctness while sharing files
▪ and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
▪ achieves load-balancing among storage servers
▪ and ensures consistency of replicated files.

Dynamic Replication of Files

Why Replicate?

• In our DFS, we’ll have two kinds of Files:

• Files that have a lot of requests

• These are denoted as “hot-files”

• Files that are very rarely accessed

• These are denoted as “cold-files”

• To achieve load-balancing, we can replicate “hot-files” onto other
SSs

How Many Replicas?

• To measure file how “hot” a file is, the NS can keep track of
the number of requests to a file:

• num_requesters: number of read requests to a file

• To scale replicas linearly with the increase of num_requests:

• num_replicas = α * num_requesters

How Many Replicas?

• However, we need to limit the number of replicas:

• num_replicas = min(α * num_requesters, upper_bound)

• This is still too sensitive/fine-grained:

• num_requests_coarse: num_requests rounded to the nearest
multiple of 20

• num_replicas = min(α * num_requests_coarse, replica_upper_bound)

How Many Replicas?

When to Replicate?

• NS would want to store num_requests as file metadata

• However, how can we determine and in turn update
num_requests over time?

• We know that Clients invoke read operations on storage servers

• Therefore, every “read” lock request from a client is deemed as a
read operation

• Afterward, NS increments num_requests

• Reavaluate num_replicas

How can we Replicate?

• NS first elects SSs to store the replicas

• NS commands each elected SS to copy the file from the
original SS

• Therefore, the metadata of a file now includes a set of SSs
instead of a single SS

How to Update Replicas

• When a Client requests a write lock on a file:
▪ It causes the NS to invalidate all the replicas except the locked one

• Invalidation is achieved by commanding those SSs hosting
replicas to delete the file

• When the Client unlocks the file, the NS commands SSs to
copy the modified file

The Command Interface

• One new operation available to the NS:

• Copy(path P, StorageStub S)
copies file with path P from StorageStub S

