
15-440: Distributed Systems

Recitation 9

School of Computer Science

Carnegie Mellon University, Qatar

Fall 2017

October 26 th, 2017

1

1 Intended Learning Outcome (ILO)
The ILO of this recitation is:

• Apply parallel programs according to the MPI standard.

2 Objectives
• Provide students with a brief overview on the MPI programming model.

• Help students develop and run MPI parallel programs.

3 MPI Overview
• What is MPI?

– MPI = Message Passing Interface.
– It’s a library of routines that can be used to create parallel programs.
– Major goal = Portability.

• Reasons for using MPI

– Standardization.
– Portability.
– Performance
– Functionality.
– Availability.

• Main Features

– Can run simultaneously on different architectures.
– Independent and concurrent execution of programs.
– Each processor has private memory and address space.
– Deadlocks can occur.

• Programming Model

– With MPI all parallelism is explicit: the programmer is responsible
for correctly identifying parallelism and implementing parallel algo-
rithms using MPI constructs.

2

• Fundamentals

– Communicators and groups
∗ MPI uses objects called communicators and groups to define
which collection of processes may communicate with each other.

∗ Most MPI routines require you to specify a communicator as an
argument.

∗ Communicators and groups will be covered in more detail in the
class lectures. For now, simply use MPI_COMM_WORLD
whenever a communicator is required - it is the predefined com-
municator that includes all of your MPI processes.

– Rank
∗ Within a communicator, every process has its own unique, inte-
ger identifier assigned by the system when the process initializes.
A rank is sometimes also called a "task ID". Ranks are contigu-
ous and begin at zero.

∗ Used by the programmer to specify the source and destination of
messages. Often used conditionally by the application to control
program execution (if rank=0 do this / if rank=1 do that).

– General MPI Program Structure:

3

• Some Frequently Used MPI Routines

1. MPI_Init(int *argc, char ***argv)

This routine initializes the MPI execution environment. This func-
tion must be called in every MPI program, must be called before
any other MPI functions and must be called only once in an MPI
program.

2. MPI_Comm_size(MPI_Comm comm, int *size)

This routine determines the number of processes in the group associ-
ated with a communicator. Generally used within the communicator
MPI_COMM_WORLD to determine the number of processes being
used by your application.

3. MPI_Comm_rank(MPI_Comm comm, int *rank)

This routine determines the rank of the calling process within the
communicator.

4. MPI_Wtime()

This routine returns an elapsed wall clock time in seconds (double
precision) on the calling processor.

5. MPI_Finalize()

This routine terminates the MPI execution environment. This func-
tion should be the last MPI routine called in every MPI program -
no other MPI routines may be called after it.

6. MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

This routine is a basic blocking send operation. It returns only after
the application buffer in the sending task becomes free for reuse.

7. MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status *status)

This routine receives a message and blocks until the requested data
is available in the application buffer in the receiving task.

• Problem

Write an MPI program that will sum up elements of an array. The root
process in your program acts as a master and the child processes act as
slaves. The master allocates equal portions of the array to each slave.
Each process then (the master as well as the slaves) calculates a partial
sum of the portion of the array assigned to it. After done, each slave
sends its partial sum to the master, who collect all partial sums from all
the slaves and calculates a grand total.

4

