
15-440
Distributed Systems

Recitation 2

Tamim Jabban

Agenda

• Communication via Sockets in Java
(this enables you to complete PS1 and start P1 (goes out
today!))

• Multi-threading in Java

• Coding a full Client-Server Example
On Eclipse, we’ll code an “echo” TCP Server-Client Example

Communication via Sockets

• Sockets provide a communication mechanism between
networked computers.

• A Socket is an end-point of communication that is
identified by an IP address and port number.

• A client sends requests to a server using a client socket.

• A server receives clients’ requests via a listening socket

Communication via Sockets

Person B
(Guest)

Person A
Is Listening

Person B
knocks the door

Person A
Opens door

Person B
Enters

Person A
(A’s home)

Communication via Sockets

Person B
(Guest)

Person A
Is Listening

Person B
knocks the door

Person A
Opens door

A “binds” to
his home

Person B
Enters

B sends a
request to

communicate

A accepts the
request

B is now
“connected”

with A

Person A
(A’s home)

Communication via Sockets

Server A Client B

Server A is Listening
to Requests

Client B sends a
request to

communicate
with the server

Server A accepts
request

A binds to:
(1) IP address
(2) Port number

Client B is now
connected with

Server A

Communication via Sockets
Listening Socket Service Socket

Socket Communication Recipe

1. Server instantiates a ServerSocket object (usually passing a port number).
This socket is referred to as the listening socket.

2. Server invokes the accept() method that awaits incoming client connections.

3. Client instantiates Socket object (passing an address to connect to).
This socket is referred to as a client socket.

4. On the server side, accept() returns a new socket referred to as a service socket on
which the client reads/writes.

* The constructor of the Socket class attempts to connect the client to the specified server and port number. If communication is
established, the client now has a Socket object capable of communicating with the server.

ServerSocket Methods
SN Methods with Description

1 public ServerSocket(int port)

Attempts to create a server socket bound to the specified port. An exception occurs if the port is already bound by another
application.

2 public ServerSocket()

Creates an unbound server socket. When using this constructor, use the bind() method when you are ready to bind the server socket.

3 public Socket accept()

Waits for an incoming client. This method blocks until either a client connects to the server on the specified port or the socket times
out, assuming that the time-out value has been set using the setSoTimeout() method. Otherwise, this method blocks indefinitely.

4 public void bind(SocketAddress host)

Binds the socket to the specified server and port in the SocketAddress object. Use this method if you instantiated the ServerSocket
using the no-argument constructor.

5 public SocketAddress getLocalSocketAddress()

Returns the address of the endpoint this socket is bound to, or null if it not bound yet.

Socket Methods
SN Methods with Description

1 public Socket(String host, int port)

This method attempts to connect to the specified server at the specified port. If this constructor does not throw an exception, the connection
is successful and the client is connected to the server.

2 public Socket()

Creates an unconnected socket. Use the connect() method to connect this socket to a server.

3 public void connect(SocketAddress host)

This method connects the socket to the specified host. This method is needed only when you instantiated the Socket using the no-argument
constructor.

4 public InputStream getInputStream()

Returns the input stream of the socket. The input stream is connected to the output stream of the remote socket.

5 public OutputStream getOutputStream()

Returns the output stream of the socket. The output stream is connected to the input stream of the remote socket

6 public SocketAddress getLocalSocketAddress()

Returns the address of the endpoint this socket is bound to, or null if it is not bound yet.

7 public void close() Closes the socket, which makes this Socket object no longer capable of connecting again to any server

Multi-Threading
• A class intended to execute as a thread must implement the Runnable

interface
public class Service implements Runnable

• STEP 1: Implement the method run()
public void run() { //thread’s logic goes here }

• STEP 2: Instantiate a Thread object
Thread t = new Thread(new Service())

• STEP 5: Invoke start() on the new thread
t.start() // invokes the run() method

Transport Protocols
• Socket: endpoint to read and write data

• Each Socket has a network protocol

• Two types of protocols used for communicating data/packets over the internet:

• TCP:

• Transmission Control Protocol

• Connection Oriented (handshake)

• UDP:

• User Datagram Protocol

• “Connectionless”

