
15-440
Distributed Systems

Recitation 3

Tamim Jabban

Project 1

• Involves creating a Distributed File System (DFS):
FileStack

• Stores data that does not fit on a single machine

• Enables clients to perform operations on files stored on
remote servers (RMI)

Entities

•Three main entities in FileStack:
• Client:

• Creates, reads, writes files using RMI
• Storage Servers:

• Physically hosts the files in its local file system
• Naming Server:

• Runs at a predefined address
• Maps file names to Storage Servers
• Therefore, it has metadata

Architecture
• FileStack will boast a Client-Server architecture:

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

5

6

Communication
• Registration phase

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

5

6

Communication
• Post registration, the Naming Server responds with a list of duplicates (if any).

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

5

6

Communication
• System is now ready, the Client can invoke requests.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

5

6

Communication
• Client requests a file (to read, write etc…) from the Naming Server.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

5

6

Communication
• Depending on the operation, the Naming Server could either perform it, or, respond back to the

Client with the Storage Server that hosts the file.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

5

6

Communication
• After the Client receives which Storage Server hosts the file, it contacts that Server to

perform the file operation.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

5

6

Communication
• When a Client invokes a method, it basically invokes a remote method (and hence,

Remote Method Invocation)

• This is because the logic of the method resides on the server

• To perform this remote invocation, we need a library: Java RMI

• RMI allows the following:

• When the client invokes a request, it is not a aware of where it resides (local or remote). It only knows
the method’s name.

• When a server executes a method, it is oblivious to the fact that the method was initiated by a remote
client.

RMI
• The RMI library is based on two important objects:

• Stubs:

• When a client needs to perform an operation, it invokes the method via an
object called the “stub”

• If the operation is local, the stub just calls the helper function that implements
this operation’s logic

• If the operation is remote, the stub does the following:

• Sends (marshals) the method name and arguments to the appropriate
server (or skeleton),

• Receives the results (and unmarshals),

• Reports them back to the client.

RMI
• The RMI library is based on two important objects:

• Skeletons:

• These are counterparts of stubs and reside reversely at the servers
• Therefore, each stub communicates with a corresponding skeleton

• It’s responsible for:

• Listening to multiple clients

• Unmarshalling requests (method name & method arguments)

• Processing the requests

• Marshalling & sending results to the corresponding stub

Interfaces
• Servers declare all their methods in interfaces

• Such interfaces contain a subset of the methods the server can perform

Naming Server Interfaces

Naming
Server

Service
Interface

Implements

isDirectory
isFile

…

Registration
Interface

Implements

register

Storage Server Interfaces

Storage
Server

Storage
Interface

Implements

size
read
write

Command
Interface

Implements

create
delete

Creating Stubs & Skeletons

• For a client to create a Stub, it needs:

• An interface of the corresponding Skeleton

• Network address of the corresponding Skeleton

• For a server to create a Skeleton, it needs:

• An interface

• A class that implements the logic of the methods defined in the given interface

• Network address of the server

Naming Server Skeletons & Stubs

Naming
Server

Registration
Interface

Service
Interface

ImplementsImplements

Service
Skeleton

Registration
Skeleton

Storage Server Skeletons & Stubs

Storage
Server

Command
Interface

Storage
Interface

ImplementsImplements

Storage
Skeleton

Command
Skeleton

Storage
Stub

Command
Stub

Storage Server Skeletons & Stubs

Storage
Server

Command
Interface

Storage
Interface

ImplementsImplements

These stubs are sent to the Naming server
during registration

Simple Stub-Skeleton Communication

Naming
Server

Registration
Interface

Service
InterfaceImplements

Creates

Service
Skeleton

Registration
Skeleton

Client
Service

Stub

Implements

Full Example: Client Read
Client

Naming
Server

Storage
Server

Service
Stub

Service
Skeleton

Storage
Skeleton

TI
M

E

ServiceStub.getStorage(abc)

GetStorage(abc)

GetStorage(abc)

Storage
Stub

Storage
Stub

Storage
Stub

StorageStub.
read(abc,0,10)

read(abc,0,10)

read(abc,0,10)

“HelloWorld”
“HelloWorld”

“HelloWorld”

Creating a Stub
• In Java, a stub is implemented as a dynamic proxy

• A proxy has an associated invocation handler

• Example: getStorage in Figure 2:

• When getStorage is invoked on the Service Stub, the proxy encodes the method name
(getStorage) and the argument(s) (file ‘abc’)

• The proxy sends the encoded data to the invocation handler

• The invocation handler determines if it is a local or remote procedure, and acts accordingly
(as how it was shown earlier)

• Go over java.lang.reflect.Proxy via the JavaDocs!

