
15-440
Distributed Systems

Recitation 9

Tamim Jabban

Project 3

• Involves using the Message Passing Interface (MPI)

• The Project will apply MPI to the popular clustering
problem

• The clustering problem will be solved via the
K-Means algorithm

• Due date: November 26th

What is MPI?

• MPI = Message Passing Interface

• MPI is a library of routines that can be used to create
parallel programs.

Fundamentals: Communicators & Groups

• MPI defines communicators and groups to define which
collection of processes may communicate with each other

• Most MPI routines/functions require a communicator as an
input parameter

• For simplicity, we’ll be using the MPI_COMM_WORLD
communicator

• This communicator includes all of your MPI processes

Fundamentals: Ranks

• Within a communicator, each process has its own
and unique ID or rank

• These IDs are commonly used conditionally to control
program execution

• Ranks start from 0

MPI Routines

• MPI_Init(int *argc, char ***argv)

• This initializes the MPI execution environment.

• Therefore, this must be called (once) at the start of every
MPI program

MPI Routines

• MPI_Comm_size(MPI_Comm comm, int *size)

• This determines the number of processes in the
group associated with the comm communicator

MPI Routines

• MPI_Comm_rank(MPI_Comm comm, int *rank)

• This determines the rank of the calling process
within the comm communicator.

MPI Routines

• MPI_Wtime()

• This returns an elapsed wall clock time in seconds
(double precision) on the calling processor.

• We’ll use this to measure the runtime of an MPI program

MPI Routines
• MPI_Send(void *buf, int count,

MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)

• This is a basic blocking send operation. It returns
only after the application has sent the data to the
recipient(s)

MPI Routines
• MPI_Recv(void *buf, int count,

MPI_Datatype datatype, int src, int tag,
MPI_Comm comm, MPI_Status *status)

• This receives a message and blocks until the requested data
is available in the application buffer

MPI Routines

• MPI_Finalize()

• This terminates the MPI execution environment.

• This should be called at the end of every MPI program

Using MPI

• 4 VMs/nodes provisioned

• Coding in C

• Using n01 as your primary VM

Running MPI
• Machinefile

• Compiling:

• mpicc HelloWorld.c -o HelloWorld

• Copying object file (to all machines you want to use)

• scp -p "HelloWorld" andrewid-n02.qatar.cmu.local:/home/hadoop/

• Running the program:

• mpiexec -f machinefile -n 2 ./HelloWorld

MPI Examples

• Together, we’ll program two MPI examples:

• HelloWorld

• A Distributed Sum Program

