15-213

Floating Point Arithmetic Sept 5, 2007

Topics

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

Floating Point Puzzles

- **■** For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
• x == (int) (float) x
• x == (int) (double) x
• f == (float)(double) f
• d == (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f
              \Rightarrow -f > -d
• d * d >= 0.0
 (d+f)-d == f
```

IEEE Floating Point

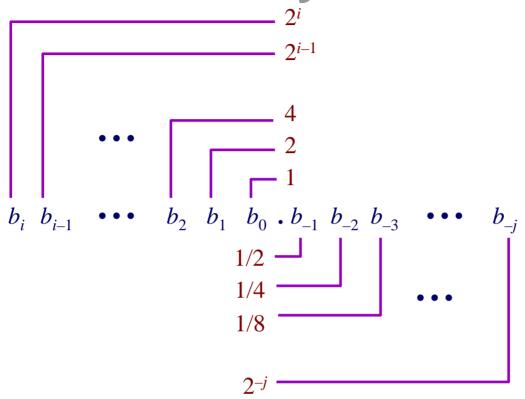
IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Fractional Binary Numbers



Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-i}^{i} b_k \cdot 2^k$$

Frac. Binary Number Examples

5-3/4 101.11₂
2-7/8 10.111₂
63/64 0.111111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.1111111..., just below 1.0
 - \bullet 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... \rightarrow 1.0
 - ●Use notation 1.0 ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form $x/2^k$
- Other numbers have repeating bit representations

Value	Representation
1/3	0.01010101[01]2
1/5	$0.001100110011[0011]{2}$
1/10	0.0001100110011[0011]2

Floating Point Representation

Numerical Form

- \blacksquare -1^s M 2^E
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Floating Point Precisions

Encoding

s exp frac

- MSB is sign bit
- exp field encodes *E*
- frac field encodes M

Sizes

- Single precision: 8 exp bits, 23 frac bits
 - 32 bits total
- Double precision: 11 exp bits, 52 frac bits
 - 64 bits total
- Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits
 - » 1 bit wasted

"Normalized" Numeric Values

Condition

■ $\exp \neq 000...0$ and $\exp \neq 111...1$

Exponent coded as biased value

```
E = Exp - Bias
```

- Exp: unsigned value denoted by exp
- Bias : Bias value
 - » Single precision: 127 (*Exp*: 1...254, *E*: -126...127)
 - » Double precision: 1023 (*Exp*: 1...2046, *E*: -1022...1023)
 - » in general: Bias = 2e-1 1, where e is number of exponent bits

Significand coded with implied leading 1

```
M = 1.xxx...x_2
```

- xxx...x: bits of frac
- Minimum when 000...0 (*M* = 1.0)
- Maximum when 111...1 (*M* = 2.0 ϵ)
- Get extra leading bit for "free"

Normalized Encoding Example

Value

```
Float F = 15213.0;

\blacksquare 15213<sub>10</sub> = 11101101101101<sub>2</sub> = 1.1101101101101<sub>2</sub> X 2<sup>13</sup>
```

Significand

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Floating Point Representation:

140: 100 0110 0

15213: **1**110 1101 1011 01

Denormalized Values

Condition

 $= \exp = 000...0$

Value

- Exponent value E = -Bias + 1
- Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac

Cases

- \blacksquare exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
- \blacksquare exp = 000...0, frac \neq 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - "Gradual underflow"

Special Values

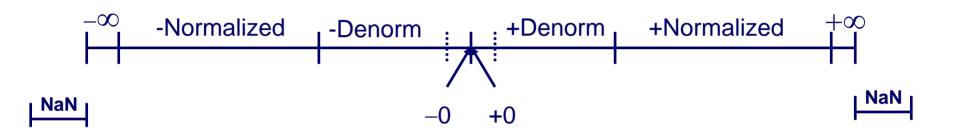
Condition

 \blacksquare exp = 111...1

Cases

- \blacksquare exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- $= \exp = 111...1, \operatorname{frac} \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

Summary of Floating Point Real Number Encodings



Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same General Form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

7	6 3	2 0
S	exp	frac

Values Related to the Exponent

Ехр	exp	E	2 ^E	
0	0000	-6	1/64	(denorms)
1	0001	-6	1/64	
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a		(inf, NaN)

Dynamic Range

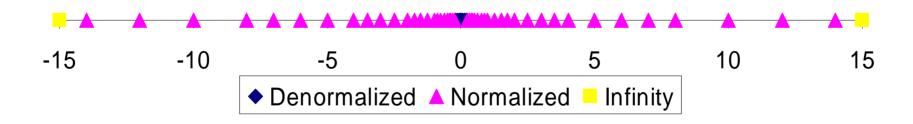
	s	ехр	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 ← closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers					
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 ← largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 ← smallest norm
			001		9/8*1/64 = 9/512
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	$15/8*1/2 = 15/16 \leftarrow \text{closest to 1 below}$
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	$9/8*1 = 9/8 \leftarrow \text{closest to 1 above}$
	0	0111	010	0	10/8*1 = 10/8
	•••				
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 ← largest norm
•••••	0	1111	000	n/a	inf
4.0					داوی کان دو میاون فو قط

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

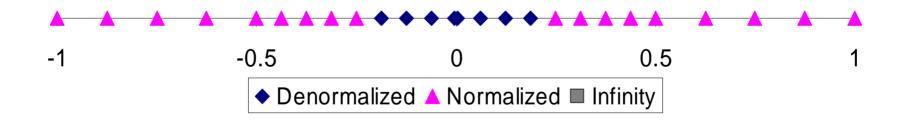
Notice how the distribution gets denser toward zero.



Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- \blacksquare f = 2 fraction bits
- Bias is 3



Interesting Numbers

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm. ■ Single ≈ 1.4 X 10 ⁻⁴ ■ Double ≈ 4.9 X 10 ⁻⁴		0001	2- {23,52} X 2- {126,1022}
Largest DenormalizedSingle ≈ 1.18 X 10Double ≈ 2.2 X 10	-38	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. Normalized Just larger than la			1.0 X 2 ^{- {126,1022}}
One	0111	0000	1.0
Largest Normalized ■ Single ≈ 3.4 X 10 ³⁶	_	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

■ Double ≈ 1.8 X 10³⁰⁸

Special Properties of Encoding

FP Zero Same as Integer Zero

■ All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations

Conceptual View

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
■ Zero	\$1	\$1	\$1	\$2	- \$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
■ Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- **E.g.**, round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- Half way when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.111002	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

FP Multiplication

Operands

 $(-1)^{s_1} M1 \ 2^{E_1}$ * $(-1)^{s_2} M2 \ 2^{E_2}$

Exact Result

 $(-1)^s M 2^E$

■ **Sign** s: s1 ^ s2

■ Significand M: M1 * M2

■ Exponent *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift M right, increment E
- If *E* out of range, overflow
- Round *M* to fit frac precision

Implementation

Biggest chore is multiplying significands

FP Addition

Operands

 $(-1)^{s1} M1 2^{E1}$ $(-1)^{s2} M2 2^{E2}$

■ **Assume** *E1* > *E2*

$(-1)^{s_1} M1$ + $(-1)^{s_2} M2$

Exact Result

 $(-1)^s M 2^E$

- Sign s, significand M:
 - Result of signed align & add
- Exponent *E*: *E*1

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round *M* to fit frac precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?

YES

But may generate infinity or NaN

Commutative?

YES

Associative?

NO

Overflow and inexactness of rounding

0 is additive identity?

YES

■ Every element has additive inverse ALMOST

Except for infinities & NaNs

Monotonicity

■ $a \ge b \Rightarrow a+c \ge b+c$?

ALMOST

Except for infinities & NaNs

Math. Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication?

YES

- But may generate infinity or NaN
- Multiplication Commutative?

YES

Multiplication is Associative?

NO

- Possibility of overflow, inexactness of rounding
- 1 is multiplicative identity?

YES

- Multiplication distributes over addition? NO
 - Possibility of overflow, inexactness of rounding

Monotonicity

 $\blacksquare a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?

ALMOST

Except for infinities & NaNs

Creating Floating Point Number

Steps

- Normalize to have leading 1
- 7 6 3 2 0
 S exp frac
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study

- Convert 8-bit unsigned numbers to tiny floating point format
- Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

7	6 3	2 0
S	exp	frac

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	5
19	00010011	1.0011000	5
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

Round up conditions

■ Round = 1, Sticky = $1 \rightarrow > 0.5$

■ Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr	? Rounded
128	1.000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	111	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Floating Point in C

C Guarantees Two Levels

float single precision double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN
 - » Generally sets to TMin
- int to double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int to float
 - Will round according to rounding mode

Curious Excel Behavior

	Number	Subtract 16	Subtract .3	Subtract .01
Default Format	16.31	0.31	0.01	-1.2681E-15
Currency Format	\$16.31	\$0.31	\$0.01	(\$0.00)

- Spreadsheets use floating point for all computations
- Some imprecision for decimal arithmetic
- Can yield nonintuitive results to an accountant!

Summary

IEEE Floating Point Has Clear Mathematical Properties

- **Represents numbers of form** $M \times 2^{E}$
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers