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Shared Variables in Threaded C 
Programs
Question: Which variables  in a threaded C program are 

shared variables?
The answer is not as simple as “global variables are shared”
and “stack variables are private”.

Requires answers to the following questions:
What is the memory model for threads?
How are variables mapped to memory instances?
How many threads reference each of these instances?
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Threads Memory Model
Conceptual model:

Multiple threads run within the context of a single process.
Each thread has its own separate thread context

Thread ID, stack, stack pointer, program counter, condition codes, and 
general purpose registers.

All threads share the remaining process context.
Code, data, heap, and shared library segments of the process virtual 
address space
Open files and installed handlers

Operationally, this model is not strictly enforced:
While register values are truly separate and protected....
Any thread can read and write the stack of any other thread. 

Mismatch between the conceptual and operation model is a source 
of confusion and errors.
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Example of Threads Accessing 
Another Thread’s Stack
char **ptr;  /* global */

int main()
{

int i;
pthread_t tid;
char *msgs[N] = {

"Hello from foo",
"Hello from bar"

};
ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid, 
NULL, 
thread, 
(void *)i);

Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{

int myid = (int) vargp;
static int svar = 0;

printf("[%d]: %s (svar=%d)\n", 
myid, ptr[myid], ++svar);

}

Peer threads access main thread’s stack
indirectly through global ptr variable
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Mapping Variables to Mem. Instances

char **ptr;  /* global */

int main()
{

int i;
pthread_t tid;
char *msgs[N] = {

"Hello from foo",
"Hello from bar"

};
ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid, 
NULL, 
thread, 
(void *)i);

Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{

int myid = (int)vargp;
static int svar = 0;

printf("[%d]: %s (svar=%d)\n", 
myid, ptr[myid], ++svar);

}

Global var: 1 instance (ptr [data])

Local static var: 1 instance (svar [data])

Local automatic vars: 1 instance (i.m, msgs.m )

Local automatic var: 2 instances (
myid.p0[peer thread 0’s stack],
myid.p1[peer thread 1’s stack]

)
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Shared Variable Analysis
Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
svar no yes yes
i.m yes no no
msgs.m yes yes yes
myid.p0 no yes no
myid.p1 no no yes

Answer: A variable x is shared iff multiple threads 
reference at least one  instance of x. Thus:

ptr, svar, and msgs are shared.
i and myid are NOT shared.
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badcnt.c: An Improperly 
Synchronized Threaded Program
/* shared */
volatile unsigned int cnt = 0;
#define NITERS 100000000 

int main() {
pthread_t tid1, tid2;
Pthread_create(&tid1, NULL, 

count, NULL);
Pthread_create(&tid2, NULL, 

count, NULL);

Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

if (cnt != (unsigned)NITERS*2)
printf("BOOM! cnt=%d\n", 

cnt);
else

printf("OK cnt=%d\n", 
cnt);

}

/* thread routine */
void *count(void *arg) {

int i;
for (i=0; i<NITERS; i++)

cnt++;
return NULL;

}

linux> ./badcnt
BOOM! cnt=198841183

linux> ./badcnt
BOOM! cnt=198261801

linux> ./badcnt
BOOM! cnt=198269672

cnt should be
equal to 200,000,000. 
What went wrong?!
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Assembly Code for Counter Loop

.L9:
movl -4(%ebp),%eax
cmpl $99999999,%eax
jle .L12
jmp .L10

.L12:
movl cnt,%eax # Load
leal 1(%eax),%edx  # Update
movl %edx,cnt # Store

.L11:
movl -4(%ebp),%eax
leal 1(%eax),%edx
movl %edx,-4(%ebp)
jmp .L9

.L10:

Corresponding asm code for (i=0; i<NITERS; i++)
cnt++;

C code for counter loop

Head (Hi)

Tail (Ti)

Load cnt (Li)
Update cnt (Ui)

Store cnt (Si)
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Concurrent Execution
Key idea: In general, any sequentially consistent 

interleaving is possible, but some are incorrect!
Ii denotes that thread i executes instruction I
%eaxi is the contents of %eax in thread i’s context

H1
L1
U1
S1
H2
L2
U2
S2
T2
T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%eax1

OK

-
-
-
-
-
1
2
2
2
-

%eax2
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Concurrent Execution (cont)
Incorrect ordering: two threads increment the counter, 

but the result is 1 instead of 2.

H1
L1
U1
H2
L2
S1
T1
U2
S2
T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%eax1

-
-
-
-
0
-
-
1
1
1

%eax2

Oops!
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Concurrent Execution (cont)
How about this ordering?

H1
L1
H2
L2
U2
S2
U1
S1
T1
T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%eax1 %eax2

We can clarify our understanding of concurrent
execution with the help of the progress graph
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Beware of Optimizing Compilers!

Global variable cnt shared 
between threads
Multiple threads could be 
trying to update within their 
iterations

Compiler moved access to 
cnt out of loop
Only shared accesses to cnt
occur before loop (read) or 
after (write)
What are possible program 
outcomes?

#define NITERS 100000000

/* shared counter variable */
unsigned int cnt = 0;

/* thread routine */
void *count(void *arg) 
{

int i;
for (i = 0; i < NITERS; i++)

cnt++;
return NULL;

}

Code From Book

movl cnt, %ecx
movl $99999999, %eax
.L6:

leal 1(%ecx), %edx
decl %eax
movl %edx, %ecx
jns .L6
movl %edx, cnt

Generated Code



– 13 – 15-213, F’07

Controlling Optimizing Compilers!

Declaring variable as volatile 
forces it to be kept in 
memory

Shared variable read and 
written each iteration

#define NITERS 100000000

/* shared counter variable */
volatile unsigned int cnt = 0;

/* thread routine */
void *count(void *arg) 
{

int i;
for (i = 0; i < NITERS; i++)

cnt++;
return NULL;

}

Revised Book Code

movl $99999999, %edx
.L15:

movl cnt, %eax
incl %eax
decl %edx
movl %eax, cnt
jns .L15

Generated Code
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Progress Graphs
A progress graph depicts
the discrete execution 
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where  thread 1 has
completed L1 and thread
2 has completed S2.

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)
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Trajectories in Progress Graphs

A trajectory is a sequence 
of legal state transitions 
that describes one possible 
concurrent execution of
the threads.

Example:

H1, L1, U1, H2, L2, 
S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2
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Critical Sections and Unsafe Regions
L, U, and S form a 
critical section with
respect to the shared
variable cnt.

Instructions in critical
sections (wrt to some
shared variable) should 
not be interleaved.

Sets of states where such
interleaving occurs
form unsafe regions.

H1 L1 U1 S1

L2

U2

S2

T1

H2

T2

Thread 1

Thread 2

Unsafe region

critical section wrt cnt

critical 
section 
wrt cnt
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Safe and Unsafe Trajectories

Def: A trajectory is safe
iff it doesn’t  touch any 
part of an unsafe region.

Claim: A trajectory is 
correct (wrt cnt)  iff it is
safe.

H1 L1 U1 S1

L2

U2

S2

T1

H2

T2

Thread 1

Thread 2

Unsafe region Unsafe
trajectory

Safe trajectory

critical section wrt cnt

critical 
section 
wrt cnt
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Semaphores

Question: How can we guarantee a safe trajectory?
We must synchronize the threads so that they never enter an 
unsafe state.

Classic solution: Dijkstra's P and V operations on 
semaphores.

semaphore: non-negative integer synchronization variable.
P(s): [ while (s == 0) wait(); s--; ]

» Dutch for "Proberen" (test)
V(s): [ s++; ]

» Dutch for "Verhogen" (increment)
OS guarantees that operations between brackets [ ] are 
executed indivisibly.

Only one P or V operation at a time can modify s.
When while loop in P terminates, only that P can decrement s.

Semaphore invariant: (s >= 0)
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Safe Sharing with Semaphores
Here is how we would  use P and V operations to 

synchronize the threads that update cnt.

/* Semaphore s is initially 1 */

/* Thread routine */
void *count(void *arg)
{

int i;

for (i=0; i<NITERS; i++) {
P(s);
cnt++;
V(s);

}
return NULL;

}
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Safe Sharing With Semaphores
Provide mutually 
exclusive access to 
shared variable by 
surrounding critical 
section with  P and V 
operations on semaphore
s (initially set to 1).

Semaphore invariant 
creates a forbidden region
that encloses unsafe 
region and is never 
touched by any trajectory.

H1 P(s) V(s) T1

Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

Unsafe region

Forbidden region

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Initially
s = 1
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Wrappers on POSIX Semaphores
/* Initialize semaphore sem to value */
/* pshared=0 if thread, pshared=1 if process */
void Sem_init(sem_t *sem, int pshared, unsigned int value) {
if (sem_init(sem, pshared, value) < 0)

unix_error("Sem_init");
}

/* P operation on semaphore sem */
void P(sem_t *sem) {
if (sem_wait(sem))

unix_error("P");
}

/* V operation on semaphore sem */
void V(sem_t *sem) {
if (sem_post(sem))

unix_error("V");
}
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Sharing With POSIX Semaphores
/* properly sync’d counter program */
#include "csapp.h"
#define NITERS 10000000

volatile unsigned int cnt; 
sem_t sem;        /* semaphore */

int main() {
pthread_t tid1, tid2;

Sem_init(&sem, 0, 1); /* sem=1 */

/* create 2 threads and wait */
...

if (cnt != (unsigned)NITERS*2)
printf("BOOM! cnt=%d\n", cnt);

else
printf("OK cnt=%d\n", cnt);

exit(0);
}

/* thread routine */
void *count(void *arg)
{

int i;

for (i=0; i<NITERS; i++) {
P(&sem);
cnt++;
V(&sem);

}
return NULL;

}
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Signaling With Semaphores

Common synchronization pattern:
Producer waits for slot, inserts item in buffer, and “signals” consumer.
Consumer waits for item, removes it from buffer, and “signals”
producer.

“signals” in this context has nothing to do with Unix signals

Examples
Multimedia processing:

Producer creates MPEG video frames, consumer renders the frames 
Event-driven graphical user interfaces

Producer detects mouse clicks, mouse movements, and keyboard hits and 
inserts corresponding events in buffer.
Consumer retrieves events from buffer and paints the display.

producer
thread

shared
buffer

consumer
thread
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Producer-Consumer on a Buffer 
That Holds One Item

/* buf1.c - producer-consumer
on 1-element buffer */
#include “csapp.h”

#define NITERS 5

void *producer(void *arg);
void *consumer(void *arg);

struct {
int buf; /* shared var */
sem_t full; /* sems */
sem_t empty;

} shared;

int main() {
pthread_t tid_producer;
pthread_t tid_consumer;

/* initialize the semaphores */
Sem_init(&shared.empty, 0, 1); 
Sem_init(&shared.full,  0, 0);

/* create threads and wait */
Pthread_create(&tid_producer, NULL, 

producer, NULL);
Pthread_create(&tid_consumer, NULL, 

consumer, NULL);
Pthread_join(tid_producer, NULL);
Pthread_join(tid_consumer, NULL);

exit(0);
}
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Producer-Consumer (cont)

/* producer thread */
void *producer(void *arg) {
int i, item;

for (i=0; i<NITERS; i++) {
/* produce item */
item = i;
printf("produced %d\n", 

item);

/* write item to buf */
P(&shared.empty);
shared.buf = item;
V(&shared.full);

}
return NULL;

}

/* consumer thread */
void *consumer(void *arg) {
int i, item;

for (i=0; i<NITERS; i++) {
/* read item from buf */
P(&shared.full);
item = shared.buf;
V(&shared.empty);

/* consume item */
printf("consumed %d\n", 

item);
}
return NULL;

}

Initially:  empty = 1, full = 0.
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Thread Safety
Functions called from a thread must be thread-safe.

We identify four (non-disjoint) classes of thread-unsafe 
functions:

Class 1: Failing to protect shared variables.
Class 2: Relying on persistent state across invocations.
Class 3: Returning a pointer to a static variable.
Class 4: Calling thread-unsafe functions.
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Thread-Unsafe Functions
Class 1: Failing to protect shared variables.

Fix: Use P and V semaphore operations.
Example: goodcnt.c
Issue: Synchronization operations will slow down code.

e.g., badcnt requires 0.5s, goodcnt requires 7.9s
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Thread-Unsafe Functions (cont)
Class 2:  Relying on persistent state across multiple 

function invocations.
Random number generator relies on static state 

Fix: Rewrite function so that caller passes in all necessary 
state.

/* rand - return pseudo-random integer on 0..32767 */ 
int rand(void) 
{ 

static unsigned int next = 1; 
next = next*1103515245 + 12345; 
return (unsigned int)(next/65536) % 32768; 

} 

/* srand - set seed for rand() */ 
void srand(unsigned int seed) 
{ 

next = seed; 
} 
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Thread-Unsafe Functions (cont)
Class 3: Returning a ptr to 

a static variable.

Fixes: 
1. Rewrite code so caller 
passes pointer to struct.

» Issue: Requires 
changes in caller 
and callee.

2. Lock-and-copy
» Issue: Requires only 

simple changes in 
caller (and none in  
callee)

» However, caller must 
free memory.

hostp = Malloc(...));
gethostbyname_r(name, hostp);

struct hostent
*gethostbyname(char name)
{
static struct hostent h;
<contact DNS and fill in h>
return &h;

}

struct hostent
*gethostbyname_ts(char *name) 
{
struct hostent *q = Malloc(...);
struct hostent *p;
P(&mutex); /* lock */
p = gethostbyname(name);
*q = *p;   /* copy */
V(&mutex);
return q;

}
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Thread-Unsafe Functions
Class 4: Calling thread-unsafe functions.

Calling one thread-unsafe function makes an entire function 
thread-unsafe.

Fix: Modify the function so it calls only thread-safe functions



– 31 – 15-213, F’07

Reentrant Functions
A function is reentrant iff it accesses NO shared variables when 

called from multiple threads.
Reentrant functions are a proper subset of the set of thread-safe 
functions.

NOTE: The fixes to Class 2 and 3 thread-unsafe functions require 
modifying the function to make it reentrant.

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions
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Thread-Safe Library Functions
All functions in the Standard C Library (at the back of 

your K&R text) are thread-safe.
Examples: malloc, free, printf, scanf

Most Unix system calls are thread-safe, with a few 
exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime_r
ctime 3 ctime_r
gethostbyaddr 3 gethostbyaddr_r
gethostbyname 3 gethostbyname_r
inet_ntoa 3 (none)
localtime 3 localtime_r
rand 2 rand_r
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Races
A race occurs when the correctness of the program 

depends on one thread reaching point x before another 
thread reaches point y.

/* a threaded program with a race */
int main() {

pthread_t tid[N];
int i;
for (i = 0; i < N; i++)

Pthread_create(&tid[i], NULL, thread, &i);
for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);
exit(0);

}

/* thread routine */
void *thread(void *vargp) {

int myid = *((int *)vargp);
printf("Hello from thread %d\n", myid);
return NULL;

}
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Deadlock
Processes wait for condition that will never be true

Typical Scenario
Processes 1 and 2 needs resources A and B to proceed
Process 1 acquires A, waits for B
Process 2 acquires B, waits for A
Both will wait forever!
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Deadlocking With POSIX Semaphores
int main() 
{

pthread_t tid[2];
Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
exit(0);

}
void *count(void *vargp) 
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[id]); P(&mutex[1-id]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s1);
P(s0);
cnt++;
V(s1);
V(s0);
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deadlock
region

Deadlock

P(s0) V(s0)

V(s1)

Thread 1

Thread 0
Initially, s0=s1=1

P(s1)

P(s1) V(s1)

forbidden
region for s0

forbidden
region for s1

P(s0)

V(s0)
deadlock

state

Locking introduces  the
potential for deadlock:
waiting for a condition 
that will never be true.

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for 
either s0 or s1 to become 
nonzero.

Other trajectories luck out 
and skirt the deadlock 
region.

Unfortunate fact: deadlock 
is often non-deterministic.
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Avoiding Deadlock
int main() 
{

pthread_t tid[2];
Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
exit(0);

}
void *count(void *vargp) 
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[0]); P(&mutex[1]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s0);
P(s1);
cnt++;
V(s1);
V(s0);

Acquire shared resources in same order
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Removed Deadlock

P(s0) V(s0)

V(s1)

Thread 1

Thread 0
Initially, s0=s1=1

P(s0)

P(s1) V(s1)

forbidden
region for s0

forbidden
region for s1

P(s1)

V(s0)

No way for trajectory to 
get stuck

Processes acquire locks 
in same order

Order in which locks 
released immaterial
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Threads Summary
Threads provide another mechanism for writing 

concurrent programs.

Threads are growing in popularity
Somewhat cheaper than processes.
Easy to share data between threads.

However, the ease of sharing has a cost:
Easy to introduce subtle synchronization errors.
Tread carefully with threads!

For more info:
D. Butenhof, “Programming with Posix Threads”, Addison-
Wesley, 1997.
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