
Introduction to
Computer Systems*

Introduction to
Computer Systems*

Topics:Topics:
Theme
Five great realities of computer systems
How this fits within CS curriculum

15-213 F ’08class01a.ppt

15-213

Khaled A. Harras
August 18, 2008

* Slide Credits: Prof. Randal E. Bryant

2 15-213: Intro to Computer Systems
Fall 2008 ©

Course ThemeCourse Theme
Abstraction is good, but don’t forget reality!

Courses to date emphasize abstractionCourses to date emphasize abstraction
Abstract data types
Asymptotic analysis

These abstractions have limitsThese abstractions have limits
Especially in the presence of bugs
Need to understand underlying implementations

Useful outcomesUseful outcomes
Become more effective programmers

Able to find and eliminate bugs efficiently
Able to tune program performance

Prepare for later “systems” classes in CS & ECE
Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems

3 15-213: Intro to Computer Systems
Fall 2008 ©

Great Reality #1Great Reality #1
IntInt’’ss are not Integers, Floatare not Integers, Float’’s are not s are not RealsReals

ExamplesExamples
Is x2 ≥ 0?

Float’s: Yes!
Int’s:

» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ??

Is (x + y) + z = x + (y + z)?
Unsigned & Signed Int’s: Yes!
Float’s:

» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

4 15-213: Intro to Computer Systems
Fall 2008 ©

Computer ArithmeticComputer Arithmetic
Does not generate random valuesDoes not generate random values

Arithmetic operations have important mathematical
properties

Cannot assume Cannot assume ““usualusual”” propertiesproperties
Due to finiteness of representations
Integer operations satisfy “ring” properties

Commutativity, associativity, distributivity
Floating point operations satisfy “ordering” properties

Monotonicity, values of signs

ObservationObservation
Need to understand which abstractions apply in which
contexts
Important issues for compiler writers and serious application
programmers

5 15-213: Intro to Computer Systems
Fall 2008 ©

Great Reality #2Great Reality #2
YouYou’’ve got to know assemblyve got to know assembly

Chances are, youChances are, you’’ll never write program in assemblyll never write program in assembly
Compilers are much better & more patient than you are

Understanding assembly key to machineUnderstanding assembly key to machine--level level
execution modelexecution model

Behavior of programs in presence of bugs
High-level language model breaks down

Tuning program performance
Understanding sources of program inefficiency

Implementing system software
Compiler has machine code as target
Operating systems must manage process state

Creating / fighting malware
x86 assembly is the language of choice!

6 15-213: Intro to Computer Systems
Fall 2008 ©

Assembly Code ExampleAssembly Code Example
Time Stamp CounterTime Stamp Counter

Special 64-bit register in Intel-compatible machines
Incremented every clock cycle
Read with rdtsc instruction

ApplicationApplication
Measure time required by procedure

In units of clock cycles

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

7 15-213: Intro to Computer Systems
Fall 2008 ©

Great Reality #3Great Reality #3
Memory Matters: Memory Matters: Random Access Memory is anRandom Access Memory is an

unun--physical abstractionphysical abstraction

Memory is not unboundedMemory is not unbounded
It must be allocated and managed
Many applications are memory dominated

Memory referencing bugs especially perniciousMemory referencing bugs especially pernicious
Effects are distant in both time and space

Memory performance is not uniformMemory performance is not uniform
Cache and virtual memory effects can greatly affect program
performance
Adapting program to characteristics of memory system can
lead to major speed improvements

8 15-213: Intro to Computer Systems
Fall 2008 ©

Memory Referencing Bug ExampleMemory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

9 15-213: Intro to Computer Systems
Fall 2008 ©

Referencing Bug ExplanationReferencing Bug Explanation

C does not implement bounds checking
Out of range write can affect other parts of program state

Saved State

d7 … d4

d3 … d0

a[1]

a[0] 0

1

2

3

4

Location accessed
by fun(i)

10 15-213: Intro to Computer Systems
Fall 2008 ©

Memory Referencing ErrorsMemory Referencing Errors
C and C++ do not provide any memory protectionC and C++ do not provide any memory protection

Out of bounds array references
Invalid pointer values
Abuses of malloc/free

Can lead to nasty bugsCan lead to nasty bugs
Whether or not bug has any effect depends on system and
compiler
Action at a distance

Corrupted object logically unrelated to one being accessed
Effect of bug may be first observed long after it is generated

How can I deal with this?How can I deal with this?
Program in Java, Lisp, or ML
Understand what possible interactions may occur
Use or develop tools to detect referencing errors

11 15-213: Intro to Computer Systems
Fall 2008 ©

Memory System Performance
Example
Memory System Performance
Example

Hierarchical memory organization
Performance depends on access patterns

Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

59,393,288 clock cycles 1,277,877,876 clock cycles

21.5 times slower!
(Measured on 2GHz

Intel Pentium 4)

12 15-213: Intro to Computer Systems
Fall 2008 ©

The Memory MountainThe Memory Mountain

s1

s3

s5

s7

s9

s1
1

s1
3

s1
5

8m

2m 51
2k 12

8k 32
k 8k

2k

0

200

400

600

800

1000

1200

Stride (words) Working set size (bytes)

Pentium III Xeon
550 MHz
16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

L1

L2

Mem

xe

copyij

copyji

13 15-213: Intro to Computer Systems
Fall 2008 ©

Memory Performance ExampleMemory Performance Example
Implementations of Matrix MultiplicationImplementations of Matrix Multiplication

Multiple ways to nest loops

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {

sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum

}
}

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {

sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum

}
}

14 15-213: Intro to Computer Systems
Fall 2008 ©

0

20

40

60

80

100

120

140

160

matrix size (n)

ijk
ikj
jik
jki
kij
kji

Matmult Performance (Alpha 21164)Matmult Performance (Alpha 21164)
Too big for L1 Cache Too big for L2 Cache

15 15-213: Intro to Computer Systems
Fall 2008 ©

Blocked matmult perf (Alpha 21164)Blocked matmult perf (Alpha 21164)

0

20

40

60

80

100

120

140

160

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

bijk
bikj
ijk
ikj

16 15-213: Intro to Computer Systems
Fall 2008 ©

Great Reality #4Great Reality #4
ThereThere’’s more to performance than asymptotic s more to performance than asymptotic

complexitycomplexity

Constant factors matter too!Constant factors matter too!
Easily see 10:1 performance range depending on how code
written
Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
How programs compiled and executed
How to measure program performance and identify
bottlenecks
How to improve performance without destroying code
modularity and generality

17 15-213: Intro to Computer Systems
Fall 2008 ©

Great Reality #5Great Reality #5
Computers do more than execute programsComputers do more than execute programs

They need to get data in and outThey need to get data in and out
I/O system critical to program reliability and performance

They communicate with each other over networksThey communicate with each other over networks
Many system-level issues arise in presence of network

Concurrent operations by autonomous processes
Coping with unreliable media
Cross platform compatibility
Complex performance issues

18 15-213: Intro to Computer Systems
Fall 2008 ©

Role within CurriculumRole within Curriculum

Transition from Abstract to Transition from Abstract to
Concrete!Concrete!

From: high-level language
model
To: underlying
implementation

CS 211
Fundamental

Structures

CS 213
Systems

CS 412
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

Machine Code
Optimization

Data Structures
Applications
Programming

CS 212
Execution

Models

CS 441
Networks

Network
Protocols

ECE 447
Architecture

ECE 349
Embedded
Systems

Exec. Model
Memory System

CS 123
C Programming

19 15-213: Intro to Computer Systems
Fall 2008 ©

Course PerspectiveCourse Perspective
Most Systems Courses are BuilderMost Systems Courses are Builder--CentricCentric

Computer Architecture
Design pipelined processor in Verilog

Operating Systems
Implement large portions of operating system

Compilers
Write compiler for simple language

Networking
Implement and simulate network protocols

20 15-213: Intro to Computer Systems
Fall 2008 ©

Course Perspective (Cont.)Course Perspective (Cont.)
Our Course is ProgrammerOur Course is Programmer--CentricCentric

Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer
Enable you to

Write programs that are more reliable and efficient
Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers
Not just a course for dedicated hackers

We bring out the hidden hacker in everyone
Cover material in this course that you won’t see elsewhere

	Introduction to Computer Systems*
	Course Theme
	Great Reality #1
	Computer Arithmetic
	Great Reality #2
	Assembly Code Example
	Great Reality #3
	Memory Referencing Bug Example
	Referencing Bug Explanation
	Memory Referencing Errors
	Memory System Performance Example
	The Memory Mountain
	Memory Performance Example
	Matmult Performance (Alpha 21164)
	Blocked matmult perf (Alpha 21164)
	Great Reality #4
	Great Reality #5
	Role within Curriculum
	Course Perspective
	Course Perspective (Cont.)

