15-213 "The Class That Gives CMU Its Zip!"

Bits, Bytes, and Integers August 20, 2008

Topics

- Representing information as bits
- Bit-level manipulations
 - Boolean algebra
 - Expressing in C
- Representations of Integers
 - Basic properties and operations
 - Implications for C

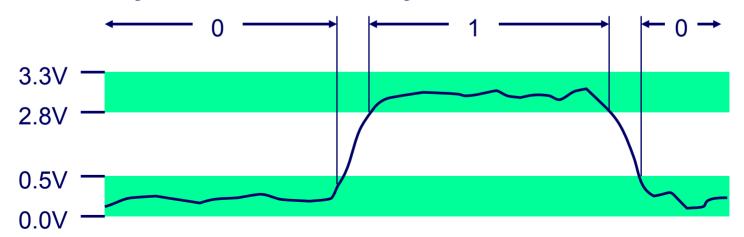
Binary Representations

Base 2 Number Representation

- Represent 15213₁₀ as 11101101101101₂
- Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires



Encoding Byte Values

Byte = 8 bits

- Binary 00000000₂ to 11111111₂
- Decimal: 0_{10} to 255_{10}
 - First digit must not be 0 in C
- Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as 0xFA1D37B

» Or 0xfald37b

Hex Decimal Binary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular "process"
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- All allocation within single virtual address space

Machine Words

Machine Has "Word Size"

- Nominal size of integer-valued data
 - Including addresses
- Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - » Users can access 3GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 10¹⁹ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization 32-bit 6

Addresses Specify Byte Locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

32-bit Words	64-bit Words	Bytes	Addr.
			0000
Addr =			0001
0000			0002
	Addr =		0003
	0000		0004
Addr =			0005
0004			0006
			0007
			8000
Addr =			0009
0008	Addr		0010
	=		0011
	0008		0012
Addr =			0013
0012			0014
			0015

Data Representations

Sizes of C Objects (in Bytes)

C Data Type	Typical 32-bit	Intel IA32	x86-64
unsigned	4	4	4
• int	4	4	4
long int	4	4	4
• char	1	1	1
short	2	2	2
float	4	4	4
double	8	8	8
long double	e –	10/12	10/12
• char *	4	4	8

[»] Or any other pointer

Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions

- Big Endian: Sun, PPC Mac
 - Least significant byte has highest address
- Little Endian: x86
 - Least significant byte has lowest address

Byte Ordering Example

Big Endian

■ Least significant byte has highest address

Little Endian

■ Least significant byte has lowest address

Example

- Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100

Big Endian	1		0x100	0x101	0x102	0x103		
			01	23	45	67		
Little Endian 0x100 0x101 0x102 0x103								
			67	45	23	01		

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)

Deciphering Numbers

- Value:
- Pad to 4 bytes:
- Split into bytes:
- Reverse:

0x12ab

0x000012ab

00 00 12 ab

ab 12 00 00

Examining Data Representations

Code to Print Byte Representation of Data

■ Casting pointer to unsigned char * creates byte array

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffcb8  0x6d
0x11ffffcb9  0x3b
0x11ffffcba  0x00
0x11ffffcbb  0x00
```

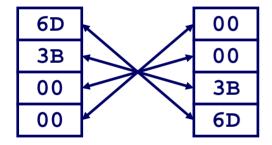
Representing Integers

```
int A = 15213;
int B = -15213;
long int C = 15213;
```

Decimal: 15213

Binary: 0011 1011 0110 1101

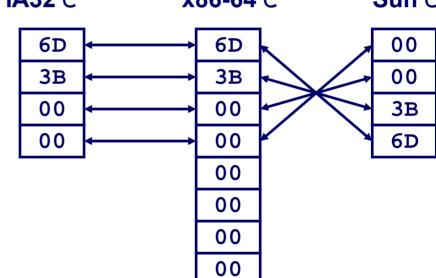
Hex: 3 B 6 D



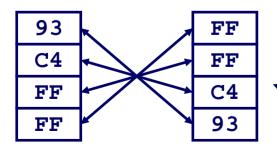
IA32 C

x86-64 C

Sun C



IA32, **x86-64** в **Sun** в

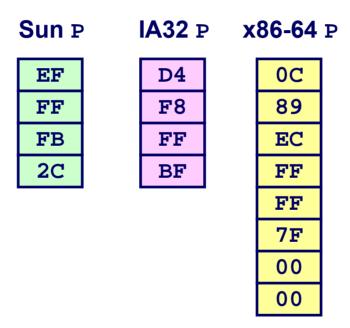


Two's complement representation

(Covered later)

Representing Pointers

```
int B = -15213;
int *P = &B;
```



Different compilers & machines assign different locations to objects

Representing Strings

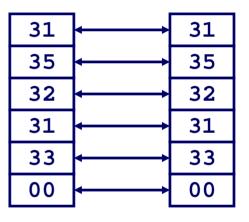
Strings in C

- char S[6] = "15213";
- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - » Digit i has code $0 \times 30 + i$
- String should be null-terminated
 - Final character = 0

Compatibility

■ Byte ordering not an issue

Linux/Alpha s Sun s



Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

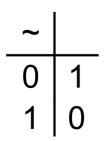
And

Or

■ A&B = 1 when both A=1 and

Not

■ ~A = 1 when A=0



Exclusive-Or (Xor)

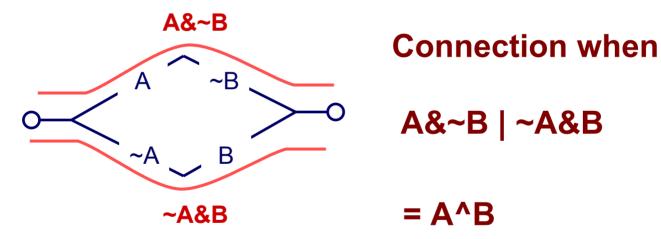
■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master's Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0



General Boolean Algebras

Operate on Bit Vectors

Operations applied bitwise

```
      01101001
      01101001

      & 01010101
      01010101
      01010101
      01010101

      01000001
      01111101
      00111100
      10101010
```

All of the Properties of Boolean Algebra Apply

Representing & Manipulating Sets

Representation

■ Width w bit vector represents subsets of {0, ..., w-1}

```
■ a_j = 1 if j \in A
01101001 {0, 3, 5, 6}
76543210

01010101 {0, 2, 4, 6}
```

Operations

&	Intersection	01000001 { 0, 6 }
	Union	01111101 { 0, 2, 3, 4, 5, 6 }
■ ^	Symmetric difference	00111100 { 2, 3, 4, 5 }
~	Complement	10101010 { 1, 3, 5, 7 }

Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41 --> 0xBE ~01000001₂ --> 10111110₂
- ~0x00 --> 0xFF ~00000000₂ --> 11111111₂
- 0x69 & 0x55 --> 0x41 01101001₂ & 01010101₂ --> 01000001₂
- 0x69 | 0x55 --> 0x7D 01101001₂ | 01010101₂ --> 01111101₂

Contrast: Logic Operations in C

Contrast to Logical Operators

- **&&**. | |,!
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- $| \cdot | \cdot 0x41 --> 0x00$
- | (0x00) --> 0x01
- | !!0x41 --> 0x01
- $0x69 \&\& 0x55 \longrightarrow 0x01$
- 0x69 | 0x55 --> 0x01
- p && *p (avoids null pointer access)

Shift Operations

Left Shift: $x \ll y$

- Shift bit-vector x left y positions
 - » Throw away extra bits on left
 - Fill with 0's on right

Right Shift: $x \gg y$

- Shift bit-vector x right y positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0's on left
- Arithmetic shift
 - Replicate most significant bit on right

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	11101000

Strange Behavior

Shift amount > word size

Integer C Puzzles

- Assume 32-bit word size, two's complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

Initialization

•
$$x < 0$$
 $\Rightarrow ((x*2) < 0)$
• $ux >= 0$
• $x & 7 == 7$ $\Rightarrow (x << 30) < 0$
• $ux > -1$
• $x > y$ $\Rightarrow -x < -y$
• $x * x >= 0$
• $x > 0 & y > 0 \Rightarrow x + y > 0$
• $x >= 0$ $\Rightarrow -x <= 0$
• $x <= 0$ $\Rightarrow -x >= 0$
• $(x|-x)>>31 == -1$
• $ux >> 3 == ux/8$
• $x >> 3 == x/8$

Encoding Integers

Unsigned

Two's Complement

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$
 $B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$ short int $x = 15213$; short int $y = -15213$;

■ C short 2 bytes long

	Decimal	Hex	Binary
х	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Bit

Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	213	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Sum

15213

-15213

جامعة كارنيجي ميلون في قطر Carnegie Mellon OATAR CAMPUS

Numeric Ranges

Unsigned Values

■
$$UMax$$
 = $2^w - 1$ 111...1

Two's Complement Values

■
$$TMin = -2^{w-1}$$
100...0

■
$$TMax$$
 = $2^{w-1} - 1$
011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

	W					
	8	16	32	64		
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615		
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807		
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808		

Observations

- |*TMin* | = *TMax* + 1
 - Asymmetric range
- \blacksquare UMax = 2 * TMax + 1

C Programming

- #include <limits.h>
 - K&R App. B11
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform-specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)	
0000	0	0	
0001	1	1	
0010	2	2	
0011	3	3	
0100	4	4	
0101	5	5	
0110	6	6	
0111	7	7	
1000	8	– 8	
1001	9	– 7	
1010	10	– 6	
1011	11	- 5	
1100	12	–4	
1101	13	-3	
1110	14	– 2	
1111	15	–1	

Equivalence

Same encodings for nonnegative values

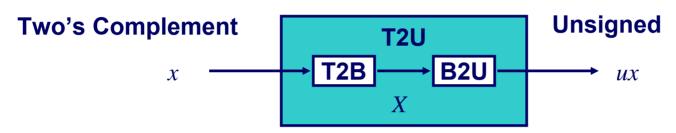
Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

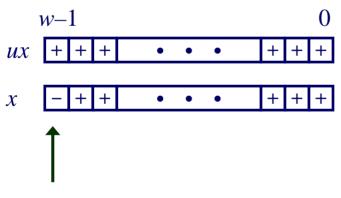
⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- \blacksquare T2B(x) = B2T⁻¹(x)
 - Bit pattern for two's comp

Relation between Signed & Unsigned



Maintain Same Bit Pattern



Large negative weight

Large positive weight

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

```
OU, 4294967259U
```

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

■ Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```

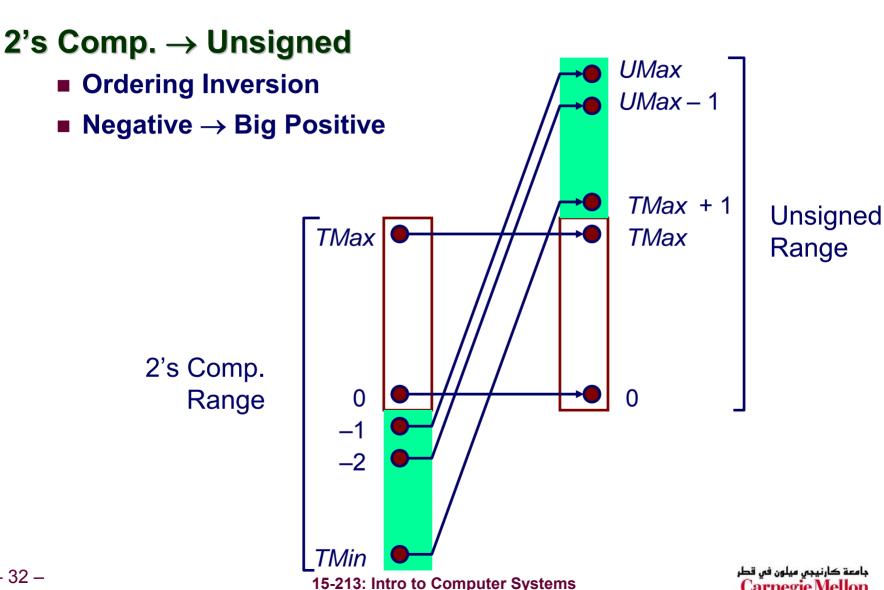
Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32

Con	stant ₁	Constant ₂	Relation	Evaluation
	0	0U	==	unsigned
	-1	0	<	signed
	-1	0υ	>	unsigned
	2147483647	-2147483648	>	signed
	2147483647U	-2147483648	<	unsigned
	-1	-2	>	signed
	(unsigned) -1	-2	>	unsigned
	2147483647	2147483648U	<	unsigned
- 31 -	2147483647	(1115 htr214748364811 Fall 2008 ©	>	جامعة كار Sig Proc Carnegie M <mark>ellon</mark> OATAR CAMPUS

Explanation of Casting Surprises



Fall 2008 ©

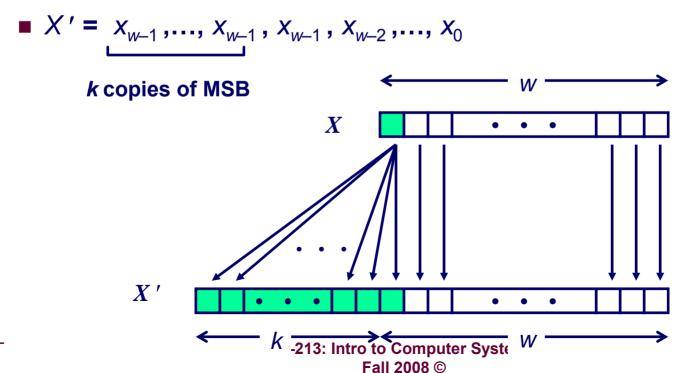
Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

■ Make *k* copies of sign bit:



Sign Extension Example

```
short int x = 15213;
int         ix = (int) x;
short int y = -15213;
int         iy = (int) y;
```

	Decimal	Hex			Binary				
X	15213		3	в 60				00111011	01101101
ix	15213	00 (00 3	в 60)	00000000	00000000	00111011	01101101
У	-15213		С	4 93				11000100	10010011
iy	-15213	FF I	FF C	4 93		11111111	11111111	11000100	10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Why Should I Use Unsigned?

Don't Use Just Because Number Nonzero

Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

■ Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

Do Use When Performing Modular Arithmetic

Multiprecision arithmetic

Do Use When Need Extra Bit's Worth of Range

Working right up to limit of word size

Negating with Complement & Increment

Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

■ Observation: $\sim x + x == 1111...11_2 == -1$

Increment

Warning: Be cautious treating int's as integers

Comp. & Incr. Examples

x = 15213

	Decimal	Hex	Binary		
X	15213	3B 6D	00111011 01101101		
~x	-15214	C4 92	11000100 10010010		
~x+1	-15213	C4 93	11000100 1001001 1		
У	-15213	C4 93	11000100 10010011		

0

	Decimal	Hex	Binary	
0	0	00 00	00000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	00000000 00000000	

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

+ v

u + v $UAdd_{w}(u, v)$

Standard Addition Function

Ignores carry output

Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

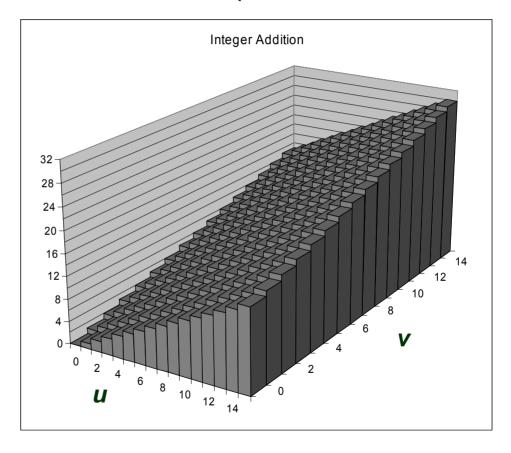
$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

Visualizing Integer Addition

Integer Addition

- 4-bit integers *u*, *v*
- Compute true sum Add₄(u, v)
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

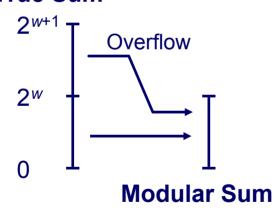


Visualizing Unsigned Addition

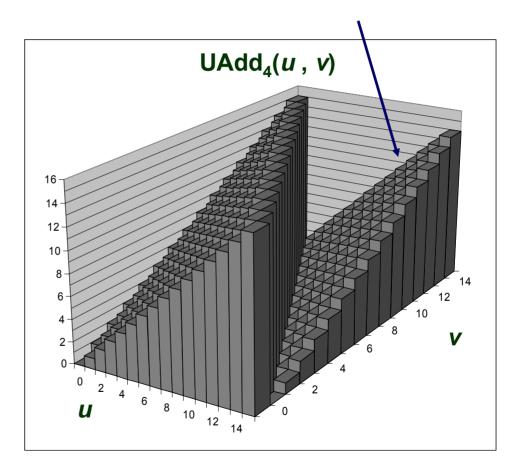
Wraps Around

- If true sum ≥ 2^w
- At most once

True Sum



Overflow



Fall 2008 ©

Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \leq \mathsf{UAdd}_{\mathsf{w}}(u, v) \leq 2^{\mathsf{w}} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u, 0) = u$$

Every element has additive inverse

• Let
$$UComp_w(u) = 2^w - u$$

 $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

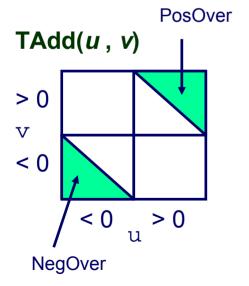
```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

■ Will give s == t

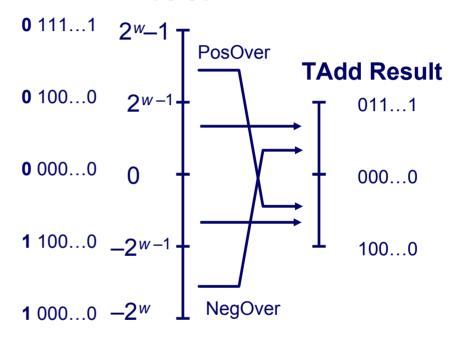
Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer



True Sum



$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

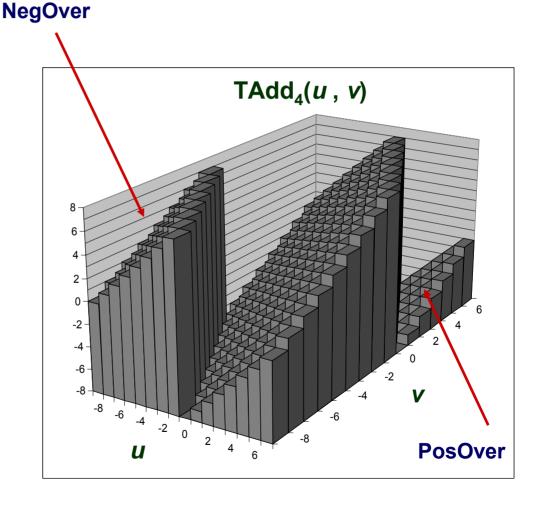
Visualizing 2's Comp. Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum < -2^{w-1}
 - Becomes positive
 - At most once



Mathematical Properties of TAdd

Isomorphic Algebra to UAdd

- $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

Two's Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- **Every element has additive inverse**

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

Multiplication

Computing Exact Product of w-bit numbers x, y

Either signed or unsigned

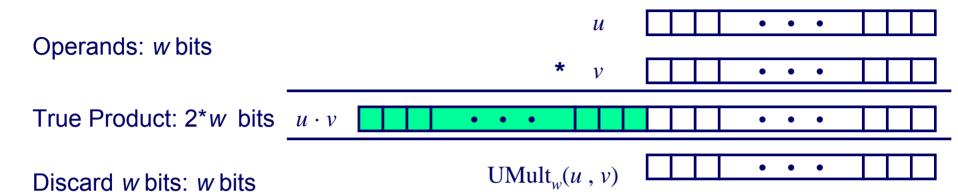
Ranges

- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2*w*–1 bits
- Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for (*TMin_w*)²

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C



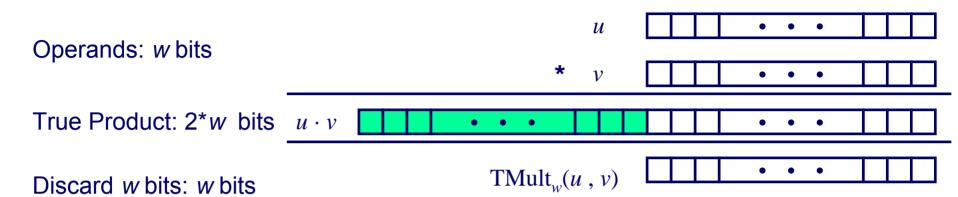
Standard Multiplication Function

■ Ignores high order w bits

Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Signed Multiplication in C



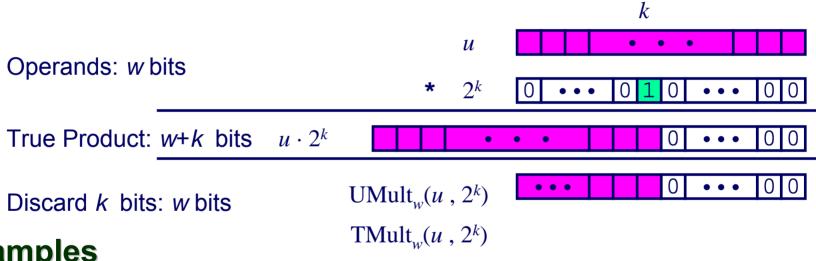
Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

- \blacksquare u << k gives u * 2^k
- Both signed and unsigned



Examples

- u << 3 ==
- u << 5 u << 3 u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

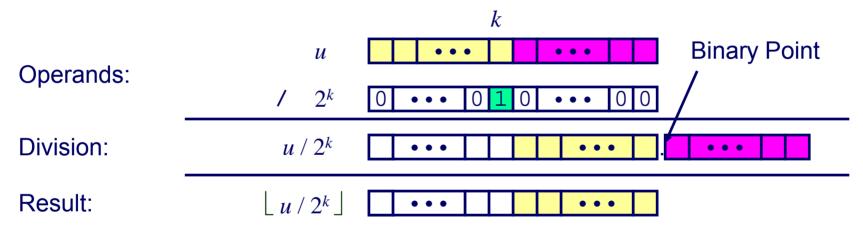
```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- \blacksquare u >> k gives \lfloor u / $2^k\rfloor$
- Uses logical shift



	Division	Computed	Hex	Binary
х	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	0 0011101 10110110
x >> 4	950.8125	950	03 Вб	00000011 10110110
x >> 8	59.4257813	59	00 3B	0000000 00111011

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

Uses logical shift for unsigned

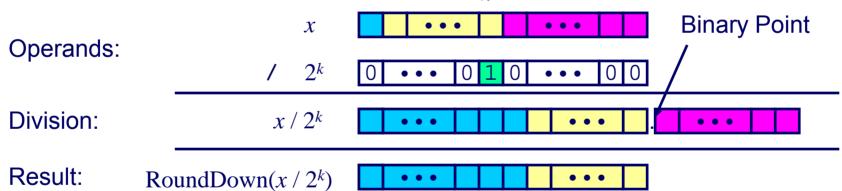
For Java Users

Logical shift written as >>>

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $\blacksquare x \gg k \text{ gives } \lfloor x / 2^k \rfloor$
- Uses arithmetic shift
- Rounds wrong direction when $\mathbf{u} < \mathbf{0}$



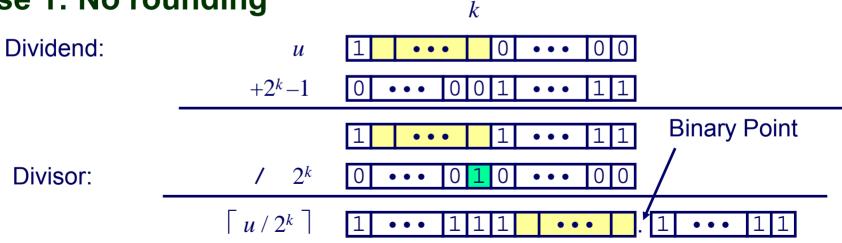
	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want $\lceil x / 2^k \rceil$ (Round Toward 0)
- Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k)-1) >> k
 - Biases dividend toward 0

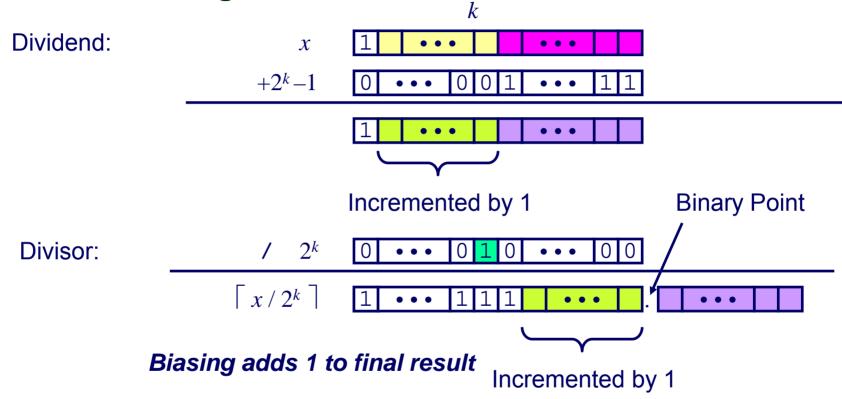
Case 1: No rounding



Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding



Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
test1 %eax, %eax
js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```

Explanation

```
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```

Uses arithmetic shift for int

For Java Users

Arith. shift written as >>

Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms Commutative Ring

- Addition is commutative group
- Closed under multiplication

$$0 \leq \mathsf{UMult}_{w}(u, v) \leq 2^{w}-1$$

Multiplication Commutative

$$UMult_w(u, v) = UMult_w(v, u)$$

Multiplication is Associative

$$UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$$

1 is multiplicative identity

$$UMult_w(u, 1) = u$$

Multiplication distributes over addtion

$$UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$$

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two's complement multiplication and addition
 - Truncating to w bits

Both Form Rings

■ Isomorphic to ring of integers mod 2^w

Comparison to Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,

$$u > 0$$
 \Rightarrow $u + v > v$
 $u > 0, v > 0$ \Rightarrow $u \cdot v > 0$

■ These properties are not obeyed by two's comp. arithmetic

$$TMax + 1 == TMin$$

Integer C Puzzles Revisited

• x < 0

 \Rightarrow ((x*2) < 0)

Initialization

• x >> 3 == x/8

• x & (x-1) != 0