15-213

Floating Point Arithmetic August 25, 2007

Topics

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

Floating Point Puzzles

- **For each of the following C expressions, either:**
 - Argue that it is true for all argument values
 - Explain why not true

int x = ...;
float f = ...;
double d = ...;

Assume neither d nor f is NaN

- x == (int) (float) x
- x == (int) (double) x
- f == (float) (double) f
- d == (float) d
- f == -(-f);
- 2/3 == 2/3.0
- $d < 0.0 \implies ((d*2) < 0.0)$
- $d > f \qquad \Rightarrow -f > -d$
- d * d >= 0.0
- (d+f)-d == f

جامعة كارنيجي ميلون في قطر Carnegie Mellon OATAR CAMPUS

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-i}^{i} b_k \cdot 2^k$$

جامعة كارنيجي ميلون في قطر Carnegie Mellon OATAR CAMPUS

15-213: Intro to Computer Systems Fall 2008 ©

Frac. Binary Number Examples

Value	Representation
5-3/4	101.11 ₂
2-7/8	10.111 ₂
63/64	0.111111 ₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ϵ

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other numbers have repeating bit representations

Value	Representation
1/3	0.0101010101[01] ₂
1/5	0.001100110011[0011] ₂
1/10	0.0001100110011[0011]2

Floating Point Representation

Numerical Form

- -1^s M 2^E
 - Sign bit s determines whether number is negative or positive
 - Significand *M* normally a fractional value in range [1.0,2.0).
 - Exponent *E* weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Floating Point Precisions

exp

Encoding

MSB is sign bit

S

- exp field encodes E
- frac field encodes M

Sizes

- Single precision: 8 exp bits, 23 frac bits
 - 32 bits total
- Double precision: 11 exp bits, 52 frac bits •64 bits total
- Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits
 - »1 bit wasted

frac

"Normalized" Numeric Values

Condition

■ exp ≠ 000...0 and exp ≠ 111...1

Exponent coded as biased value

- E = Exp Bias
 - Exp : unsigned value denoted by exp
 - Bias : Bias value
 - » Single precision: 127 (*Exp*: 1...254, *E*: -126...127)
 - » Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
 - » in general: Bias = $2^{e-1} 1$, where e is number of exponent bits

Significand coded with implied leading 1

- $M = 1.\mathbf{x}\mathbf{x}\mathbf{x}...\mathbf{x}_2$
 - xxx...x: bits of frac
 - Minimum when 000...0 (*M* = 1.0)
 - Maximum when 111...1 (*M* = 2.0 ϵ)
 - Get extra leading bit for "free"

Normalized Encoding Example

Value

Float F = 15213.0:

■ 15213₁₀ = 11101101101₂ = 1.1101101101₂ X 2¹³

Significand

vnonont	
frac=	$\underline{1101101101101}000000000_2$
<i>M</i> =	1. <u>1101101101101₂</u>

Exponent

- 10 -

E =	13	
Bias =	127	
Exp =	140 =	10001100 ₂

Floating	Point F	Repres	entatio	on:				
Hex:	4	6	6	D	в	4	0	0
Binary:	0100	0110	0110	1101	1011	0100	0000	0000
140:	100	0110	0					
15213:			1 110	1101	1011	01		
		15	-213: Intro	o to Com	outer Syst	ems		في قطر Car

OATAR CAMPUS

Denormalized Values

Condition

■ exp = 000...0

Value

- Exponent value E = -Bias + 1
- Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac

Cases

- exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
- exp = 000...0, frac ≠ 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - "Gradual underflow"

- 11 -

Condition

exp = 111...1

Cases

- exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

Summary of Floating Point Real Number Encodings

15-213: Intro to Computer Systems Fall 2008 ©

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same General Form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Values Related to the Exponent

Exp	exp	Е	2 ^E	
0	0000	-6	1/64	(denorms)
1	0001	-6	1/64	
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a		(inf, NaN)

	S	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 - closest to zero
Denormalized	0	0000	010	-6	$2/8 \times 1/64 = 2/512$
numbers					
	0	0000	110	-6	$6/8 \times 1/64 = 6/512$
	0	0000	111	-6	7/8*1/64 = 7/512 ← largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 ← smallest norm
	0	0001	001	-6	$9/8 \times 1/64 = 9/512$
	0	0110	110	-1	$14/8 \times 1/2 = 14/16$
	0	0110	111	-1	$15/8 \times 1/2 = 15/16 \leftarrow \text{closest to 1 below}$
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	$9/8 \star 1 = 9/8 \leftarrow \text{closest to 1 above}$
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	$14/8 \times 128 = 224$
	0	1110	111	7	15/8*128 = 240 ← largest norm
	0	1111	000	n/a	inf
- 16 -					جامعة كارنيڊي ميلون في قطر Computer Systems OATAR CAMPUS

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Interesting Numbers

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm. ■ Single ≈ 1.4 X 10 ⁻ ■ Double ≈ 4.9 X 10	45	0001	2- {23,52} X 2- {126,1022}
Largest Denormalized ■ Single ≈ 1.18 X 10 ■ Double ≈ 2.2 X 10)-38	1111	(1.0 – ε) Χ 2 ^{- {126,1022}}
Smallest Pos. Normalized Just larger than la			1.0 X 2 ^{- {126,1022}}
One	0111	0000	1.0
Largest Normalized Single $\approx 3.4 \times 10^3$ Double $\approx 1.8 \times 10^3$	8	1111	(2.0 – ε) Χ 2 ^{127,1023}
- 19 -	15-213: I	ntro to Computer Syste	میلون في قطر ms

جامعة كارنيجي ميلون في قطر Carnegie Mellon OATAR CAMPUS

15-213: Intro to Computer Systems Fall 2008 ©

Special Properties of Encoding

FP Zero Same as Integer Zero

All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations

Conceptual View

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Zero	\$1	\$1	\$1	\$2	-\$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

Note:

1. Round down: rounded result is close to but no greater than true result.

2. Round up: rounded result is close to but no less than true result.

- 21 -

15-213: Intro to Computer Systems Fall 2008 ©

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- Half way when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.00 110 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11100 ₂	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.10 ₂	(1/2—down)	2 1/2

FP Multiplication

Operands

 $(-1)^{s_1} M 1 2^{E_1} * (-1)^{s_2} M 2 2^{E_2}$

Exact Result

- $(-1)^{s} M 2^{E}$
- **Sign** s: s1 ^ s2
- Significand M: M1 * M2
- **Exponent** *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift *M* right, increment *E*
- If E out of range, overflow
- Round *M* to fit frac precision

Implementation

Biggest chore is multiplying significands

FP Addition

Operands

 $(-1)^{s_1} M1 2^{E_1}$

(-1)^{s2} M2 2^{E2}

Assume E1 > E2

Exact Result

 $(-1)^{s} M 2^{E}$

- Sign s, significand M:
 - Result of signed align & add
- **Exponent** *E*: *E*1

Fixing

- If $M \ge 2$, shift *M* right, increment *E*
- if *M* < 1, shift *M* left *k* positions, decrement *E* by *k*
- Overflow if E out of range
- Round *M* to fit frac precision

- 25 -

Mathematical Properties of FP Add

Compare to those of Abelian Group

- Closed under addition? YES
 But may generate infinity or NaN
 Commutative? YES
 Associative? NO
 Overflow and inexactness of rounding
 0 is additive identity? YES
 Every element has additive inverse ALMOST
 - Except for infinities & NaNs

Monotonicity

• $a \ge b \Rightarrow a+c \ge b+c$?

ALMOST

• Except for infinities & NaNs

Math. Properties of FP Mult

Compare to Commutative Ring

- Closed under multiplication? YES
 - But may generate infinity or NaN
- Multiplication Commutative? YES
- Multiplication is Associative?
 NO
 - Possibility of overflow, inexactness of rounding
- 1 is multiplicative identity?
- Multiplication distributes over addition? NO
 - Possibility of overflow, inexactness of rounding

Monotonicity

 $\bullet a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c?$

ALMOST

Except for infinities & NaNs

Creating Floating Point Number

Steps

- 28 -

Normalize to have leading 1

76		32	0
S	exp	frac	2

- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study

- Convert 8-bit unsigned numbers to tiny floating point format
- Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010

63 00111111 15-213: Intr

15-213: Intro to Computer Systems Fall 2008 ©

Requirement

Set binary point so that numbers of form 1.xxxxx

Adjust all to have leading one

• Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	5
19	00010011	1.0011000	5
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Guard bit: LSB of result Round bit: 1st bit removed

Round up conditions

- Round = 1, Sticky = 1 → > 0.5
- Guard = 1, Round = 1, Sticky = $0 \rightarrow$ Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	111	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Floating Point in C

C Guarantees Two Levels

- float single precision
- double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN
 - » Generally sets to TMin
- int to double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int to float
 - Will round according to rounding mode

Curious Excel Behavior

	Number	Subtract 16	Subtract .3	Subtract .01
Default Format	16.31	0.31	0.01	-1.2681E-15
Currency Format	\$16.31	\$0.31	\$0.01	(\$0.00)

- Spreadsheets use floating point for all computations
- Some imprecision for decimal arithmetic
- Can yield nonintuitive results to an accountant!

IEEE Floating Point Has Clear Mathematical Properties

- Represents numbers of form $M \times 2^E$
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers