15-213

Floating Point Arithmetic August 25, 2007

Topics

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

Floatìng Point Puzzles

■ For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int \(\mathrm{x}=\ldots\);
float \(\mathrm{f}=\)...;
double d = ...;
Assume neither d nor \(f\) is NaN
- \(x==\) (int) (double) \(x\)
- \(f==\) (float) (double) \(f\)
- d == (float) d
- \(\mathbf{f}=-(-f)\);
- \(2 / 3==2 / 3.0\)
- \(\mathrm{d}<0.0 \Rightarrow((\mathrm{~d} * 2)<0.0)\)
- \(\mathbf{d}>\mathrm{f} \quad \Rightarrow \quad-\mathrm{f}>-\mathrm{d}\)
- \(\mathrm{d} * \mathrm{~d}>=0.0\)
- \((d+f)-d==f\)
```

- $\mathbf{x}==$ (int) (float) \mathbf{x}

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
- Numerical analysts predominated over hardware types in defining standard

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \cdot 2^{k}
$$

Frac, Binary Number Examples

Value
5-3/4
2-7/8
63/64

Representation

$$
\begin{aligned}
& 101.11_{2} \\
& 10.111_{2} \\
& 0.111111_{2}
\end{aligned}
$$

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left

■ Numbers of form $0.111111 \ldots 2$ just below 1.0
$-1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
\bullet Use notation $1.0-\varepsilon$

Representable Numbers

Limitation

- Can only exactly represent numbers of the form $x / 2^{k}$
- Other numbers have repeating bit representations

Value
1/3
1/5
1/10

Representation

0.0101010101[01]...2
$0.001100110011[0011] \ldots 2$
$0.0001100110011[0011] \ldots 2$

Floating Point Representation

Numerical Form

- $-1^{s} M 2^{E}$
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Floating Point Precisions

Encoding

s	\exp	frac

■ MSB is sign bit

- exp field encodes E
- frac field encodes M

Sizes

■ Single precision: 8 exp bits, 23 frac bits

- 32 bits total
- Double precision: 11 exp bits, 52 frac bits -64 bits total
- Extended precision: 15 exp bits, 63 frac bits
- Only found in Intel-compatible machines
- Stored in 80 bits
» 1 bit wasted

"Normalized" Numeric Values

Condition

- $\exp \neq 000 \ldots 0$ and $\exp \neq 111 . .1$

Exponent coded as biased value
E = Exp-Bias

- Exp : unsigned value denoted by exp
- Bias : Bias value
»Single precision: 127 (Exp: 1...254, E: -126...127)
»Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
» in general: Bias $=\mathbf{2}^{\mathrm{e}-1} \mathbf{- 1}$, where e is number of exponent bits
Significand coded with implied leading 1
$M=1 . x x x . . . x_{2}$
- xxx...x: bits of frac
- Minimum when 000...0 ($\boldsymbol{M}=\mathbf{1 . 0}$)
- Maximum when 111...1 ($\boldsymbol{M}=\mathbf{2 . 0}$ - $\boldsymbol{\varepsilon}$)
- Get extra leading bit for "free"

Normalized Encoding Example

Value

```
Float F = 15213.0;
■ 15213 10 = 111011011011012 = 1.1101101101101 
```

Significand

$$
\begin{array}{lll}
M & = & 1.1101101101101_{2} \\
\text { frac } & = & \underline{11011011011010000000000_{2}}
\end{array}
$$

Exponent

E	$=$	13
Bias	$=$	127
Exp	$=$	$140=10001100_{2}$

Floating Point Representation:

| Hex: | 4 | 6 | 6 | D | B | 4 | 0 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Binary: | 0100 | 0110 | 0110 | 1101 | 1011 | 0100 | 0000 | 0000 |
| 140: | 100 | 0110 | 0 | | | | | |
| $15213:$ | | | 1110 | 1101 | 1011 | 01 | | |

Denormalized Values

Condition

■ $\exp =000 \ldots 0$

Value

- Exponent value $E=-B i a s+1$
- Significand value $M=0 . \times x x . . . x_{2}$
- xxx...x: bits of frac

Cases

- $\exp =000 \ldots 0$, frac $=000 \ldots 0$
- Represents value 0
- Note that have distinct values +0 and -0

■ exp $=000 \ldots 0$, frac $\neq 000 \ldots 0$

- Numbers very close to 0.0
- Lose precision as get smaller
- "Gradual underflow"

Special Values

Condition

■ $\exp =111 . .1$

Cases

- $\exp =111 . . .1$, frac $=000 \ldots 0$
- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., 1.0/0.0 = -1.0/-0.0 $=+\infty, 1.0 /-0.0=-\infty$

■ exp $=111 . .1$, frac $\neq 000 . . .0$

- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty, \infty * 0$

Summary of Floating Poìnt Real Number Encodings

Tìny Floating Poìnt Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac
- Same General Form as IEEE Format
- normalized, denormalized
- representation of $0, \mathrm{NaN}$, infinity

76	32	
s	exp	frac

Values Related to the Exponent

Exp	exp	E	$2^{\text {E }}$	
0	0000	-6	$1 / 64$	(denorms)
1	0001	-6	$1 / 64$	
2	0010	-5	$1 / 32$	
3	0011	-4	$1 / 16$	
4	0100	-3	$1 / 8$	
5	0101	-2	$1 / 4$	
6	0110	-1	$1 / 2$	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	(inf, NaN)
15	1111	n / a		

Dynamic Range

		exp	frac	E	Value	
	0	0000	000	-6	0	
	0	0000	001	-6	1/8*1/64 $=1 / 512$	ఒclosest to zero
Denormalized numbers	0	0000	010	-6	$2 / 8 * 1 / 64=2 / 512$	
	0	0000	110	-6	6/8*1/64 $=6 / 512$	
	0	0000	111	-6.	$7 / 8 * 1 / 64=7 / 512$	\leftarrow largest denorm
	0	0001	000	-6	8/8*1/64 $=8 / 512$	\leftarrow smallest norm
	0	0001	001	-6	9/8*1/64 $=9 / 512$	
	0	0110	110	-1	14/8*1/2 = 14/16	
	0	0110	111	-1	15/8*1/2 = 15/16	\leftarrow closest to 1 below
Normalized	0	0111	000	0	8/8*1 $=1$	
numbers	0	0111	001	0	9/8*1 $=9 / 8$	\leftarrow closest to 1 above
	0	0111	010	0	10/8*1 $=10 / 8$	
	0	1110	110	7	14/8*128 = 224	
	0	1110	111	7	$15 / 8 * 128=240$	\leftarrow largest norm
	0	1111	000	n/a	inf	
- 16 -				213: II	Computer Systems 2008 ©	Carnegie Mellon OATAR CAMPUS

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- $f=2$ fraction bits
- Bias is 3

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

■ e = 3 exponent bits
■ f = 2 fraction bits

- Bias is 3

Interesting Numbers

Description
Zero
Smallest Pos. Denorm. 00... 00 00... 01

- Single $\approx 1.4 \times 10^{-45}$
- Double $\approx 4.9 \times 10^{-324}$

Largest Denormalized 00... 00 11... 11

- Single $\approx 1.18 \times 10^{-38}$
- Double $\approx 2.2 \times 10^{-308}$

Smallest Pos. Normalized $00 \ldots 01 \quad 00 \ldots 00 \quad 1.0 \times 2^{-}\{126,1022\}$
■ Just larger than largest denormalized
One
01... 11 00... $00 \quad 1.0$

Largest Normalized 11... 10 11... 11
$(2.0-\varepsilon) \times 2^{\{127,1023\}}$

- Single $\approx 3.4 \times 10^{38}$
- Double $\approx 1.8 \times 10^{308}$

Special Properties of Encoding

FP Zero Same as Integer Zero

- All bits $=0$

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

Floating Point Operations

Conceptual View

- First compute exact result

■ Make it fit into desired precision

- Possibly overflow if exponent too large
- Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

- Zero	\$1	\$1	\$1	\$2	-\$1
- Round down (-)	\$1	\$1	\$1	\$2	-\$2
- Round up ($+\infty$)	\$2	\$2	\$2	\$3	-\$1
- Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

Note:

1. Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result.

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
- Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions
■ When exactly halfway between two possible values

- Round so that least significant digit is even
- E.g., round to nearest hundredth
$1.2349999 \quad 1.23 \quad$ (Less than half way)
$1.2350001 \quad 1.24 \quad$ (Greater than half way)
$1.2350000 \quad 1.24 \quad$ (Half way-round up)
$1.2450000 \quad 1.24 \quad$ (Half way-round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- Half way when bits to right of rounding position $=100 \ldots$ 2

Examples

- Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
$23 / 32$	10.00011_{2}	10.00_{2}	(<1/2-down)	2
$23 / 16$	10.00110_{2}	10.01_{2}	($>1 / 2$-up)	$21 / 4$
$27 / 8$	10.11100_{2}	11.00_{2}	(1/2-up)	3
$25 / 8$	10.10100_{2}	10.10_{2}	(1/2-down)	$21 / 2$

FP Multiplication

Operands

$$
(-1)^{s 1} M 12^{E 1} \quad * \quad(-1)^{s 2} M 22^{E 2}
$$

Exact Result
(-1) ${ }^{\text {s }} M 2^{E}$

- Sign s: s1^s2
- Significand M : \quad 1 * $M 2$
- Exponent E: E1 + E2

Fixing

- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

- Biggest chore is multiplying significands

FP Addition

Operands

$$
\begin{aligned}
& (-1)^{51} M 12^{E 1} \\
& (-1)^{52} M 22^{E 2}
\end{aligned}
$$

- Assume E1 > E2

Exact Result
$(-1)^{s} M 2^{E}$

- Sign s, significand M :
- Result of signed align \& add
- Exponent E: E1

Fixing

- If $M \geq 2$, shift M right, increment E
- if $M<1$, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

- Closed under addition?

YES

- But may generate infinity or NaN

■ Commutative?
■ Associative?
YES
NO

- Overflow and inexactness of rounding
$\square 0$ is additive identity?
- Every element has additive inverse
- Except for infinities \& NaNs

Monotonicity

- $a \geq b \Rightarrow a+c \geq b+c ?$
- Except for infinities \& NaNs

Math. Properties of FP Mult

Compare to Commutative Ring

- Closed under multiplication?

YES

- But may generate infinity or NaN

■ Multiplication Commutative?

- Multiplication is Associative?

YES

- Possibility of overflow, inexactness of rounding
- 1 is multiplicative identity?

YES

- Multiplication distributes over addition?

NO

- Possibility of overflow, inexactness of rounding

Monotonicity

$\square a \geq b \& c \geq 0 \Rightarrow a * c \geq b * c$?
ALMOST

- Except for infinities \& NaNs

Creating Floating Point Number

Steps

- Normalize to have leading 1

7 exp	32	
s	exp	frac

- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study

- Convert 8-bit unsigned numbers to tiny floating point format
- Example Numbers
12810000000

1500001101
3300010001
3500010011
13810001010
00111111

Normalize

76	32	
exp	exp	frac

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
- Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	5
19	00010011	1.0011000	5
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Roundìng

1.BBGRXXX

Guard bit: LSB of result Round bit: $1^{\text {st }}$ bit removed

Sticky bit: OR of remaining bits

Round up conditions

- Round $=1$, Sticky $=1 \rightarrow>0.5$
- Guard =1, Round =1, Sticky $=0 \rightarrow$ Round to even
Value Fraction GRS Incr? Rounded

128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	111	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once \& incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	$1.000 / 6$	64

Floating Poìnt in C

C Guarantees Two Levels
float single precision
double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN
» Generally sets to TMin
- int to double
- Exact conversion, as long as int has ≤ 53 bit word size
- int to float
- Will round according to rounding mode

Curious Excel Behavior

	Number	Subtract 16	Subtract .3	Subtract .01
Default Format	16.31	0.31	0.01	$-1.2681 \mathrm{E}-15$
Currency Format	$\$ 16.31$	$\$ 0.31$	$\$ 0.01$	$(\$ 0.00)$

- Spreadsheets use floating point for all computations
- Some imprecision for decimal arithmetic
- Can yield nonintuitive results to an accountant!

Summary

IEEE Floating Point Has Clear Mathematical Properties

■ Represents numbers of form $M \times{ }^{E}$

- Can reason about operations independent of implementation
- As if computed with perfect precision and then rounded
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers \& serious numerical applications programmers

