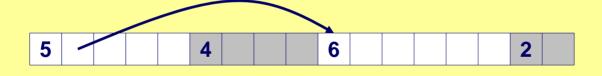
15-213

Dynamic Memory Allocation II October 22, 2008

Topics

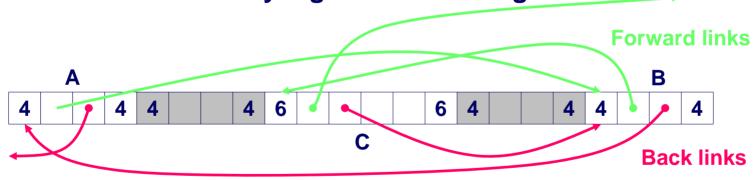
- Explicit doubly-linked free lists
- Segregated free lists
- Garbage collection
- Review of pointers
- Memory-related perils and pitfalls


جامعۃگارنیجی میلوں فی قطر Carnegie Mellon Qatar

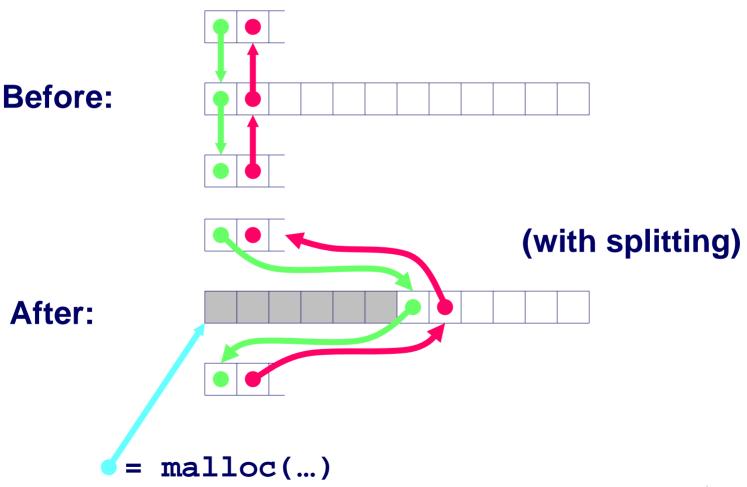
Keeping Track of Free Blocks

Method 1: Implicit list using lengths -- links all blocks

 <u>Method 2</u>: Explicit list among the free blocks using pointers within the free blocks


- Method 3: Segregated free lists
 - Different free lists for different size classes
- Method 4: Blocks sorted by size (not discussed)
 - Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key

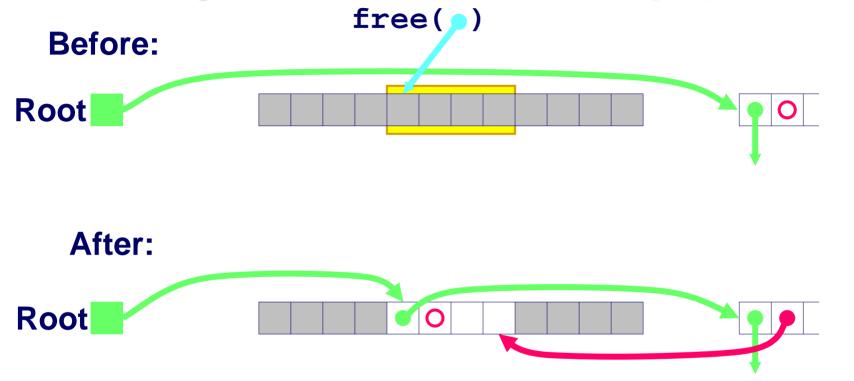
Explicit Free Lists


Use data space for link pointers

- Typically doubly linked
- Still need boundary tags for coalescing

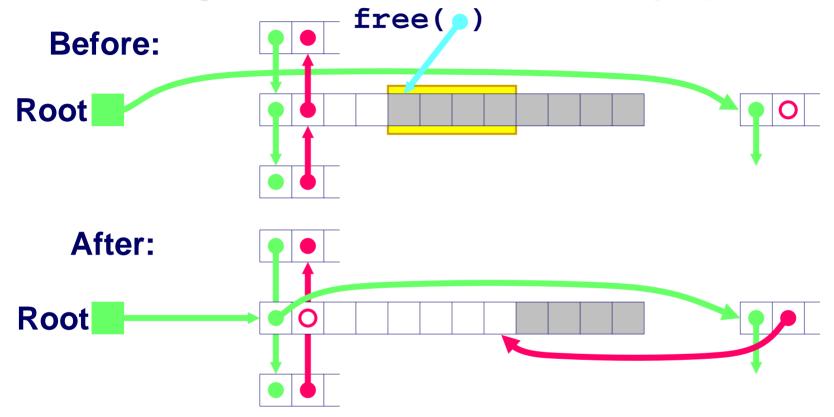
It is important to realize that links are not necessarily in the same order as the blocks

Allocating From Explicit Free Lists

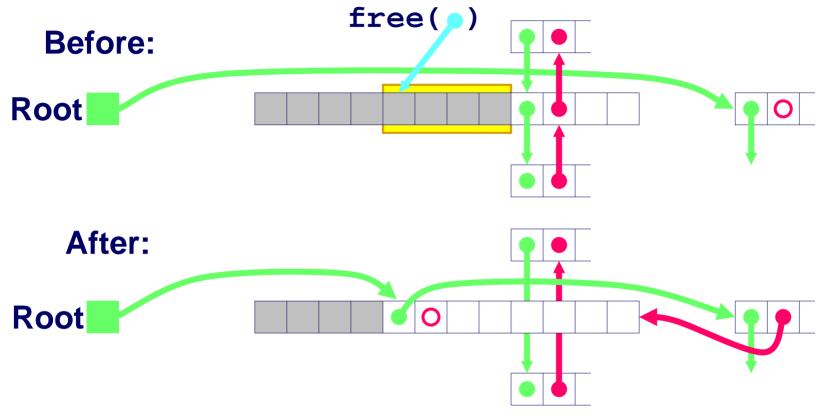


Freeing With Explicit Free Lists

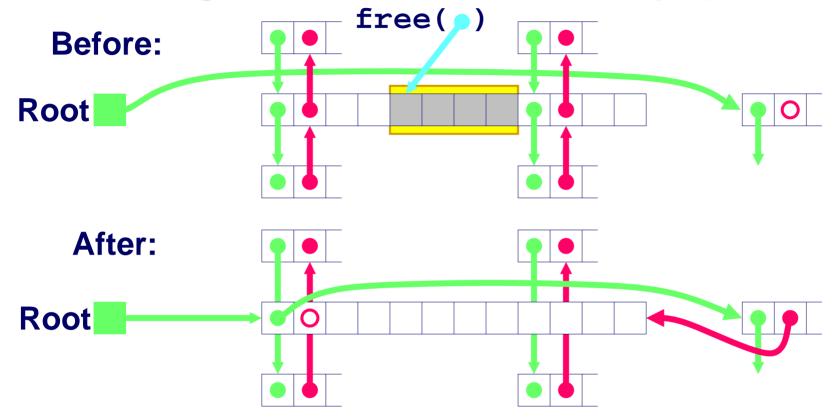
Insertion policy: Where in the free list do you put a newly freed block?


- LIFO (last-in-first-out) policy
 - Insert freed block at the beginning of the free list
 - Pro: simple and constant time
 - Con: studies suggest fragmentation is worse than address ordered.
- Address-ordered policy
 - Insert freed blocks so that free list blocks are always in address order
 - » i.e. addr(pred) < addr(curr) < addr(succ)</pre>
 - Con: requires search
 - Pro: studies suggest fragmentation is lower than LIFO

Freeing With a LIFO Policy (Case 1)


Insert the freed block at the root of the list

Freeing With a LIFO Policy (Case 2)


Splice out predecessor block, coalesce both memory blocks and insert the new block at the root of the list

Freeing With a LIFO Policy (Case 3)

Splice out successor block, coalesce both memory blocks and insert the new block at the root of the list

Freeing With a LIFO Policy (Case 4)

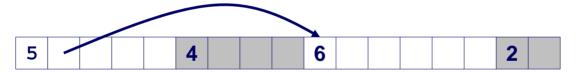
Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert the new block at the root of the list

Explicit List Summary

Comparison to implicit list:

- Allocate is linear time in number of free blocks instead of total blocks --
 - much faster allocates when most of the memory is full
- Slightly more complicated allocate and free since needs to splice blocks in and out of the list
- Some extra space for the links (2 extra words needed for each block)
 Does this increase internal frag?

Main use of linked lists is in conjunction with segregated free lists

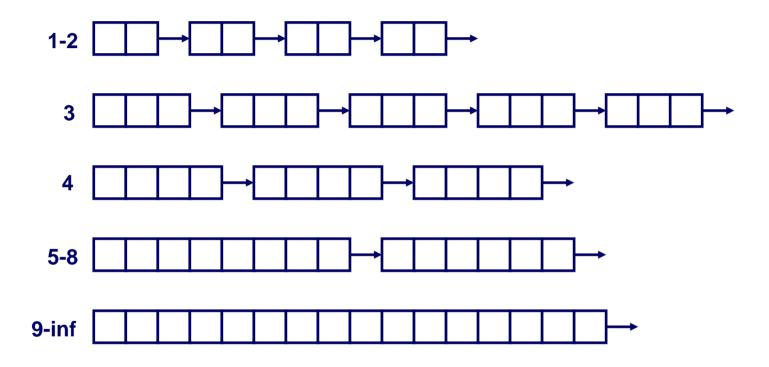

 Keep multiple linked lists of different size classes, or possibly for different types of objects

Keeping Track of Free Blocks

<u>Method 1</u>: <u>Implicit list</u> using lengths -- links all blocks

<u>Method 2</u>: Explicit list among the free blocks using pointers within the free blocks

Method 3: **Segregated free list**


Different free lists for different size classes

Method 4: Blocks sorted by size

 Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key

Segregated List (seglist) Allocators

Each size class of blocks has its own free list

- Often have separate size class for every small size (2,3,4,...)
- For larger sizes typically have a size class for each power of 2

Seglist Allocator

Given an array of free lists, each one for some size class

To allocate a block of size n:

- Search appropriate free list for block of size *m > n*
- If an appropriate block is found:
 - Split block and place fragment on appropriate list (optional)
- If no block is found, try next larger class
- Repeat until block is found

If no block is found:

- Request additional heap memory from OS (using sbrk function)
- Allocate block of n bytes from this new memory
- Place remainder as a single free block in largest size class.

Seglist Allocator (cont)

To free a block:

Coalesce and place on appropriate list (optional)

Advantages of seglist allocators

- Higher throughput
 - i.e., log time for power of two size classes
- Better memory utilization
 - First-fit search of segregated free list approximates a best-fit search of entire heap.
 - Extreme case: Giving each block its own size class is equivalent to best-fit.

For More Info on Allocators

- D. Knuth, "The Art of Computer Programming, Second Edition", Addison Wesley, 1973
 - The classic reference on dynamic storage allocation
- Wilson et al, "Dynamic Storage Allocation: A Survey and Critical Review", Proc. 1995 Int'l Workshop on Memory Management, Kinross, Scotland, Sept, 1995.
 - Comprehensive survey
 - Available from CS:APP student site (csapp.cs.cmu.edu)

Implicit Memory Management: Garbage Collection

Garbage collection: automatic reclamation of heap-allocated storage -- application never has to free

```
void foo() {
  int *p = malloc(128);
  return; /* p block is now garbage */
}
```

Common in functional languages, scripting languages, and modern object oriented languages:

■ Lisp, ML, Java, Perl, Mathematica,

Variants (conservative garbage collectors) exist for C and C++

■ However, cannot necessarily collect all garbage

Garbage Collection

How does the memory manager know when memory can be freed?

- In general we cannot know what is going to be used in the future since it depends on conditionals
- But we can tell that certain blocks cannot be used if there are no pointers to them

Need to make certain assumptions about pointers

- Memory manager can distinguish pointers from nonpointers
- All pointers point to the start of a block
- Cannot hide pointers (e.g., by coercing them to an int, and then back again)

Classical GC Algorithms

Mark and sweep collection (McCarthy, 1960)

■ Does not move blocks (unless you also "compact")

Reference counting (Collins, 1960)

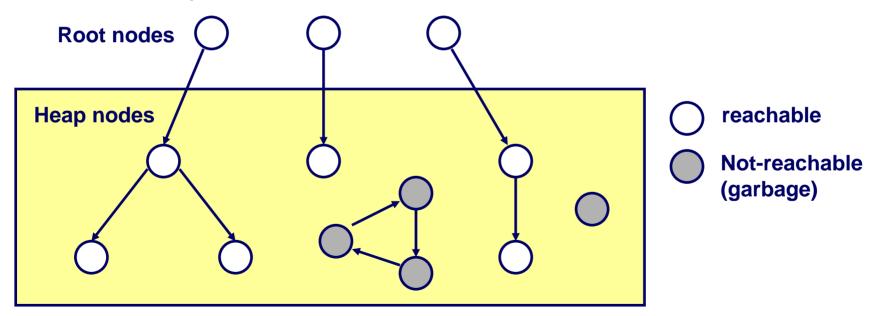
Does not move blocks (not discussed)

Copying collection (Minsky, 1963)

Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)

Collects based on lifetimes


For more information, see Jones and Lin, "Garbage Collection: Algorithms for Automatic Dynamic Memory", John Wiley & Sons, 1996.

جامعة کارنیدی میلوں فی قطر **Carnegie Mellon** Qatar

Memory as a Graph

We view memory as a directed graph

- Each block is a node in the graph
- Each pointer is an edge in the graph
- Locations not in the heap that contain pointers into the heap are called root nodes (e.g. registers, locations on the stack, global variables)

A node (block) is *reachable* if there is a path from any root to that node.

Ann-reachable nodes are *garbage* (never needed by the application) جامعة ڪارنيڍي ميلود في قطر 15-213. F'08

Carnegie Mellon Qatar

Assumptions For This Lecture

Application

- new(n): returns pointer to new block with all locations <u>cleared</u>
- read(b,i): read location i of block b into register
- write(b,i,v): write v into location i of block b

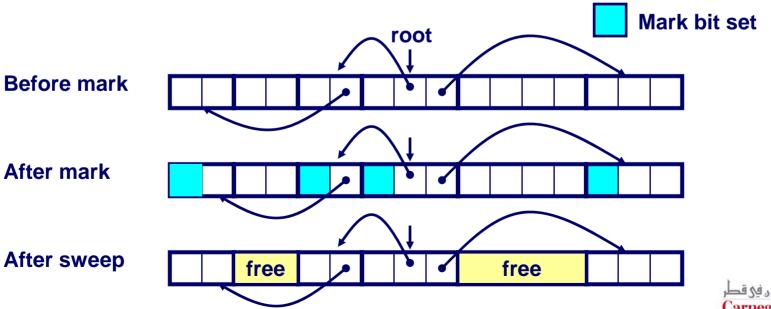
Each block will have a header word

- addressed as b[-1], for a block b
- Used for different purposes in different collectors

Instructions used by the Garbage Collector

- is_ptr(p): determines whether p is a pointer
- length(b): returns the length of block b, not including the header
- get_roots(): returns all the roots

جامعة دارنيجي ميلون في قطر **Carnegie Mellon** Qatar


Mark and Sweep Collecting

Can build on top of malloc/free package

Allocate using malloc until you "run out of space"

When out of space:

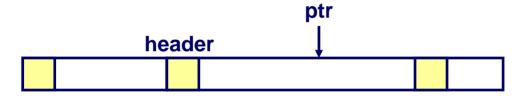
- Use extra *mark bit* in the head of each block
- *Mark:* Start at roots and sets **mark bit** on all reachable memory
- Sweep: Scan all blocks and free blocks that are not marked

جامعة کارنیدی میلود فی قطر Carnegie Mellon Qatar

Mark and Sweep (cont.)

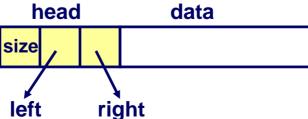
Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block


```
ptr sweep(ptr p, ptr end) {
    while (p < end) {
        if markBitSet(p)
            clearMarkBit();
        else if (allocateBitSet(p))
            free(p);
        p += length(p);
}</pre>
```

جامعة کارنیجی میلوں فی قطر Carnegie Mellon Qatar

Conservative Mark and Sweep in C


A conservative collector for C programs

- is_ptr() determines if a word is a pointer by checking if it points to an allocated block of memory.
- But, in C pointers can point to the middle of a block.

So how do we find the beginning of the block?

- Can use balanced tree to keep track of all allocated blocks where the key is the location
- Balanced tree pointers can be stored in header (use two additional words)

جامعة کارنیجی میلود فی قطر Carnegie Mellon Qatar

15-213, F'08

Memory-Related Perils and Pitfalls

Dereferencing bad pointers

Reading uninitialized memory

Overwriting memory

Referencing nonexistent variables

Freeing blocks multiple times

Referencing freed blocks

Failing to free blocks

C operators (K&R p. 53)

Operators

```
& (type) sizeof
      %
+
<< >>
   <= >
    ! =
==
&
٨
&&
?:
= += -= *= /= %= &= ^= != <<= >>=
```

Associativity

```
left to right
right to left
left to right
right to left
right to left
left to right
```

15-213. F'08

Note: Unary +, -, and * have higher precedence than binary forms

جامعة کارنیجی میلود فی قطر Carnegie Mellon Qatar

Review of C Pointer Declarations

int	*p	p is a pointer to int
int	*p[13]	p is an array[13] of pointer to int
int	*(p[13])	p is an array[13] of pointer to int
int	**p	p is a pointer to a pointer to an int
int	(*p)[13]	p is a pointer to an array[13] of int
int	*f()	f is a function returning a pointer to int
int	(*f)()	f is a pointer to a function returning int
int	(*(*f())[13])()	f is a function returning ptr to an array[13] of pointers to functions returning int
int	(*(*x[3])())[5]	x is an array[3] of pointers to functions returning pointers to array[5] of ints

Dereferencing Bad Pointers

The classic scanf bug

```
scanf("%d", val);
```

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

```
/* return y = Ax */
int *matvec(int **A, int *x) {
   int *y = malloc(N*sizeof(int));
   int i, j;
   for (i=0; i<N; i++)
      for (j=0; j<N; j++)
         y[i] += A[i][j]*x[j];
   return y;
```

Allocating the (possibly) wrong sized object

```
int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
   p[i] = malloc(M*sizeof(int));
}</pre>
```

Off-by-one error

```
int **p;
p = malloc(N*sizeof(int *));
for (i=0; i<=N; i++) {
  p[i] = malloc(M*sizeof(int));
```

Not checking the max string size

```
char s[8];
int i;

gets(s);  /* reads "123456789" from stdin */
```

Basis for classic buffer overflow attacks

- 1988 Internet worm
- Modern attacks on Web servers
- AOL/Microsoft IM war

Referencing a pointer instead of the object it points to

```
int *BinheapDelete(int **binheap, int *size) {
   int *packet;
   packet = binheap[0];
   binheap[0] = binheap[*size - 1];
   *size--;
   Heapify(binheap, *size, 0);
   return(packet);
}
```

Misunderstanding pointer arithmetic

```
int *search(int *p, int val) {
   while (*p && *p != val)
      p += sizeof(int);

   return p;
}
```

Referencing Nonexistent Variables

Forgetting that local variables disappear when a function returns

```
int *foo () {
   int val;

return &val;
}
```

Freeing Blocks Multiple Times

Nasty!

Referencing Freed Blocks

Evil!

Failing to Free Blocks (Memory Leaks)

Slow, long-term killer!

```
foo() {
   int *x = malloc(N*sizeof(int));
   ...
   return;
}
```

Failing to Free Blocks (Memory Leaks)

Freeing only part of a data structure

```
struct list {
   int val;
   struct list *next;
};
foo() {
   struct list *head = malloc(sizeof(struct list));
   head->val = 0:
   head->next = NULL;
   <create and manipulate the rest of the list>
   free(head);
   return;
```

Dealing With Memory Bugs

Conventional debugger (gdb)

- Good for finding bad pointer dereferences
- Hard to detect the other memory bugs

Debugging malloc (CSRI UToronto malloc)

- Wrapper around conventional malloc
- Detects memory bugs at malloc and free boundaries
 - Memory overwrites that corrupt heap structures
 - Some instances of freeing blocks multiple times
 - Memory leaks
- Cannot detect all memory bugs
 - Overwrites into the middle of allocated blocks
 - Freeing block twice that has been reallocated in the interim
 - Referencing freed blocks

Dealing With Memory Bugs (cont.)

Binary translator: valgrind (Linux), Purify)

- Powerful debugging and analysis technique
- Rewrites text section of executable object file
- Can detect all errors as debugging malloc
- Can also check each individual reference at runtime
 - Bad pointers
 - Overwriting
 - Referencing outside of allocated block

Garbage collection (Boehm-Weiser Conservative GC)

Let the system free blocks instead of the programmer.