Carnegie Mellon

Introduction to Computer Systems

15-213, fall 2009
12t Lecture, Oct. 7t

Instructors:
Majd Sakr and Khaled Harras

Carnegie Mellon

Last Time

m Cache Organization
m Memory Mountain

m Optimization for the memory hierarchy

Carnegie Mellon

caChe Read e Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
e A ~ * Locate data starting
4 at offset
o000

Address of word:

t bits s bits | b bits
§=2°sets < *ee tag set block
index offset

data begins at this offset

'} tag 012 cce-- B-1

valid bit S~ ~— —

B = 2P bytes per cache block (the data)

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

r t Tl Address of int:
v ag thits | 0..01 | 100

v ta ol1]2]3]|a|s5]|6]|7 ,
£ find set

S=Zssets<
v tag 0]112)3|4]|5]|6]7

v tag 0]112)3|4]|5]|6]7

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

v tag 0|1]2)3]|4]|5]|6]|7 v tag 0l1]2)3]|4]|5]|6]|7
vl | tag | |o|1]2]3]a]s]6]7 vl | tag | |o]|1]2]3]a]5]s]7 find set
v tag 0|1]12)3]|4]|5]|6]|7 v tag 0l1]2)3]|4]|5]|6]|7

v tag 0]1]2|3]|4]|5]|6]7 v tag 0l1|2|3]|4]|5]|6]7

Carnegie Mellon

Strided Access Question

E = 2¢ lines per set

AL
e ~N
(
o0 00
Address of word:
eo0e t bits s bits | b bits
S =2 sets < eeee tag set block
index offset
O 0 0000000000000 00OCOCEOGCEOGEOGEOSOEOSOSOO
o0 00
\.

m What happens if arrays are accessed in two-power strides?
m Example on the next slide

Carnegie Mellon

The Strided Access Problem (Blackboard?)

m Example: L1 cache, Core 2 Duo
= 32 KB, 8-way associative, 64 byte cache block size
= WhatisS, E, B?
= Answer: B =25 E =23, S=2°

m Consider an array of ints accessed at stride 2',i 20
" What is the smallest i such that only one set is used?
= Answer:i=10
= What happens if the stride is 2°?
= Answer: two sets are used

m Source of two-power strides?

= Example: Column access of 2-D arrays (images!)

Carnegie Mellon

Pentium III

The Memory Mountain 550 MHz

1200

Throughput (MB/sec)

Spatial TS5
Locality

16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

Ridges of
Temporal
Locality

orking set size
(bytes)

X
N
—
o]

Pentium Blocked Matrix

Multiply Performance

m Blocking (bijk and bikj) improves performance by a factor
of two over unblocked versions (ijk and jik)

= relatively insensitive to array size.

60
50 — ——l—
‘ ‘ -_- e
V4 —— kji
c 40 - - jki
® / —&— Kij
£ 30 —<—iKj
n .
% _A ‘v’v‘Vlv —~ J| k
9 20 , -@-ijk
%9000 —©— bijk (bsize = 25)
10 - —— bikj (bsize = 25)
oo a—a—a—=
. m No blocking:(9/8) * n3

POL PSSP m Blocking: 1/(4B) * n3

Array size (n)

Carnegie Mellon

Today

m Exceptional Control Flow
m Processes

Carnegie Mellon

Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
. inst
Time L2
inst;
inst,
<shutdown>

Carnegie Mellon

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return

Both react to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= data arrives from a disk or a network adapter
" jnstruction divides by zero
= user hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Exceptional Control Flow

m Exists at all levels of a computer system
m Low level mechanisms

" Exceptions

= change in control flow in response to a system event
(i.e., change in system state)

= Combination of hardware and OS software

m Higher level mechanisms
" Process context switch
= Signals
= Nonlocal jumps: setjmp()/longjmp()
" |mplemented by either:
= OS software (context switch and signals)
= Clanguage runtime library (nonlocal jumps)

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS in response to
some event (i.e., change in processor state)

User Process 0S

event —> |_current: exception S
|_next exception processing

by exception handler

<

o

* return to |_current
ereturn to |_next
eabort

m Examples:
div by 0, arithmetic overflow, page fault, I/0 request completes, Ctrl-C

Carnegie Mellon

Interrupt Vectors

Exception
numbers
eia e m Each type of event has a
exception handler 0 unique exception number k
Exception eia e
vTable exception handler 1 m k=index into exception table
(1) g (a.k.a. interrupt vector)
o code for
2 o« exception handler 2
m Handler k is called each time
n-1 e exception k occurs

code for
exception handler n-1

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor

" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:

= |/O interrupts
= hitting Ctrl-C at the keyboard
= arrival of a packet from a network
= arrival of data from a disk

" Hard reset interrupt
= hitting the reset button

= Soft reset interrupt
= hitting Ctrl-Alt-Delete on a PC

Carnegie Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= |[ntentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= unintentional and unrecoverable

= Examples: parity error, machine check

= Aborts current program

Carnegie Mellon

Trap Example: Opening File

m Usercalls: open(filename, options)
m Function open executes system call instruction Int

0804d070 < libc_open>:

804d082: cd 80 int $0x80

804d084: 5b pop %ebx
User Process (OA)
exception

int v

pop - .
returns

A 4

m OS must find or create file, get it ready for reading or writing
m Returns integer file descriptor

Carnegie Mellon

Fault Example: Page Fault
int a[1000];
m User writes to memory location ?ai” O
m That portion (page) of user’s memory a[500] = 13;
+

is currently on disk

mov i $0xd,0x8049d10

80483b7: c7 05 10 9d 04 08 0Od

User Process 0S

exception: page fault

movl % >
Create page and
returns load into memory

v

m Page handler must load page into physical memory

m Returns to faulting instruction

m Successful on second try

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];

main ()
{
a[5000] = 13;
+
80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User Process 0S

l exception: page fault

.

movl
detect invalid address

b » signal process

m Page handler detects invalid address
m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

Carnegie Mellon

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class
0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-127 OS-defined Interrupt or trap
128 (0x80) System call Trap

129-255 OS-defined Interrupt or trap

Check pp. 183:
http://download.intel.com/design/processor/manuals/253665.pdf

http://download.intel.com/design/processor/manuals/253665.pdf
http://download.intel.com/design/processor/manuals/253665.pdf

Carnegie Mellon

Today

m Exceptional Control Flow
m Processes

Carnegie Mellon

Processes

m Definition: A process is an instance of a running program.
" One of the most profound ideas in computer science
" Not the same as “program” or “processor”

m Process provides each program with two key abstractions:
" Logical control flow
= Each program seems to have exclusive use of the CPU
" Private virtual address space

= Each program seems to have exclusive use of main memory

m How are these lllusions maintained?
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system
= we’ll talk about this in a couple of weeks

Carnegie Mellon

Concurrent Processes

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples:

" Concurrent: A&B,A&C
= Sequential: B& C

Process A Process B Process C

Time

Carnegie Mellon

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes are
running in parallel with each other

Process A Process B Process C

Time

Context Switching

m Processes are managed by a shared chunk of OS code
called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some user process

m Control flow passes from one process to another via a

context switch
I
Process A 1 Process B
I
I
: user code
I kernel code } context switch
Time user code

I
I
I
I)
1 kernel code } context switch
I
: user code

I

I

Carnegie Mellon

fork: Creating New Processes

m Int fork(void)

= creates a new process (child process) that is identical to the calling
process (parent process)

= returns O to the child process
" returns child’s pid to the parent process

pid_t pid = fork();
1T (pid == 0) {

printf(""hello from child\n");
} else {

printf(C'hello from parent\n');
¥

m Fork is interesting (and often confusing) because
it is called once but returns twice

Carnegie Mellon

Understanding fork

Process n

pid_t pid = fork();
1T (pid == 0) {
printf(""hello from
} else {
printf(""hello from
+

child\n");

parent\n'");

pid_t pid = fork();

1T (pid == 0) {
printf(""hello from

} else {
printf(""hello from

}

child\n™);

parent\n'");

pid _t pid = fork();

1T (pid == 0) {
printf(""hello from

} else {
printf(""hello from

}

child\n™);

parent\n');

hello from parent

Which one is first?

Child Process m

pid _t pid = fork(Q);

1T (pid == 0) {
printf(""hello from

} else {
printf(""hello from

}

child\n);

parent\n'");

pid_t pid = fork();
1T (pid == 0) {
printf(""hello from
} else {
printf(""hello from
+

child\n™);

parent\n');

pid _t pid = fork();

1T (pid == 0) {
printf(""hello from

} else {
printf(""hello from

}

child\n™);

parent\n');

hello from child

Fork Example #1

m Parent and child both run same code
= Distinguish parent from child by return value from fork
m Start with same state, but each has private copy

" |ncluding shared output file descriptor
= Relative ordering of their print statements undefined

void forkl()
{

int x = 1;
pid _t pid = fork();
iIT (pid == 0) {

printf(""Chilld has x = %d\n", ++x);
} else {

printf("'Parent has x = %d\n", --X);
+

printf("'Bye from process %d with x = %d\n", getpid(), x);

Fork Example #2

m Both parent and child can continue forking

void fork2()

{
printF(*'LO\Nn""); “Bye
fork(); L1 | Bye
printfg"Ll\n"); | Bye
TorkQ); Lo |L1 f Bye

printf(''Bye\n"");

Fork Example #3

m Both parent and child can continue forking

zoid Tfork3() Bye
printf("'LO\Nn"); “LZ Bye
fork(); Bye
printf('LI\n"); L1 [L2 | Bye
fork(Q; | Bye
printf(''L2\n""); L2 | Bye
fork(Q); f
printf('Bye\n"); —Ye

1 Lo L1 |L2 | Bye

Carnegie Mellon

Fork Example #4

m Both parent and child can continue forking

void fork4()
{
printf("'LO\n"");
it (fork() '=0) {

printf(C'L1\n"™); . Bye
if (forkQ) '= 0) {
printf('L2\n""); Bye
fork(Q); Bye
h Lo |L1 |L2 | Bye

s
printf("'Bye\n"");

Carnegie Mellon

Fork Example #4

m Both parent and child can continue forking

void fork5()
{
printf("'LO\n"");
iIT (fork() == 0) {

printf(C'L1\n"™); _oye

iIT (fork() == 0) { L2 | Bye
printf('L2\n""); I
fork(); L1 Bye

} LO | Bye

s
printf("'Bye\n"");

Carnegie Mellon

ex1t: Ending a process

m void exit(int status)
" exits a process
= Normally return with status O
= atexit() registers functions to be executed upon exit

void cleanup(void) {
printf(*'cleaning up\n');
}

void fork6() {
atexit(cleanup);
fork(Q);
exi1t(0);

}

Zombies

m Ildea
= When process terminates, still consumes system resources
= Various tables maintained by OS
= Called a “zombie”
= Living corpse, half alive and half dead

m Reaping
= Performed by parent on terminated child
" Parent is given exit status information
= Kernel discards process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then child will be
reaped by 1ni1t process

= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Carnegie Mellon

ZOmble \EOId fork7(Q)
I iIf (fork() == 0) {
/* Child */
Examp e printf("Terminating Child, PID = %d\n",
getpid());
exi1t(0);
} else {
printf(""Running Parent, PID = %d\n",
linux> ./forks 7 & getpid());
[1] 6639 while (1)
Running Parent, PID = 6639 > /* Infinite loop */
Terminating Child, PID = 6640 ¥
Iinux> ps ¥
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh :
6639 ttyp9 00-00-03 forks m PS shows child process as
6640 ttyp9 00:00:00 forks <defunct> “defunct”

6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated m Killing parent allows child to be
linux> ps reaped by Init
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

void fork8()

Nonterminating * i corko = o ¢

/* Child */
Ch"d Examp|e printf(""Running Child, PID = %d\n",
getpid());
while (1)
. /* Infinite loop */
} else {
printf(""Terminating Parent, PID = %d\n",
getpid());
exit(0);
}
}
linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even
Iinux> ps though parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks m Must kill explicitly, or else will keep

6677 ttyp9 00:00:00 ps
Linux> kill 6676
Linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

running indefinitely

Carnegie Mellon

wal t: Synchronizing with Children

m INnt wartt(int *child_status)
® suspends current process until one of its children terminates
" return value is the pid of the child process that terminated

= ifchild _status !'= NULL, then the object it points to will be set
to a status indicating why the child process terminated

Carnegie Mellon

wal t: Synchronizing with Children

void fork9() {
int child _status;

iIT (fork() == 0) {
printfF(""HC: hello from child\n'");
} e LLIIIT
else {
printF(""HP: hello from parent\n''); HP CT Bye
wart(&child _status);
printf("'CT: child has terminated\n');

}
printf("'Bye\n'");
exit(Q);

wailt() Example

m [f multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forkl10()
{
pid _t pid[N];
int 1;
int child _status;
for (i = 0; 1 < Nj; i1++)
1T ((pid[i] = fork()) == 0)
ex1t(100+1); /* Child */
for (1 = 0; 1 < Nj; 1++t) {
pid _t wpid = wait(&child_status);
iIT (WIFEXITED(child _status))
printf("'Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child _status));
else
printf(C'Child %d terminate abnormally\n', wpid);

wartpid(): Waiting for a Specific Process

s waltpid(pid, &status, options)
= suspends current process until specific process terminates
= various options (that we won’t talk about)

void forkll1()
{

pid _t pid[N];
int i;
int child _status;
for (1 = 0; 1 < Nj; 1++)
iIT ((prd[1] = fork()) == 0)
ex1t(100+1); /* Child */
for (1 = 0; 1 < Nj; 1++t) {
pid t wpid = waitpid(pid[i1], &child status, 0);
iIT (WIFEXITED(child_status))
printfF(""Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child status));
else
printf("'Chilld %d terminated abnormally\n', wpid);

Carnegie Mellon

execve: Loading and Running Programs

k
OxbFFFFFFf Stac
E Int execve(Null-terminated
e environment
char *filename ’ variable strings
char *argvlL],
h * Null-terminated
char envp commandline
) arg strings
m Loads and runs unused

envp[n] = NULL
envp[n-1]

" Executable F1lename
= With argument list argv

= And environment variable I1st envp envp[0]
argv[argc] = NULL
argv[argc-1]

m Does not return (unless error)

m Overwrites process, keeps pid

m Environment variables: argv[0]

" you s Linker vars
" “name=value” strings
envp
argv

argc

execve: Example

envp[n] = NULL

envp[n-1] —> “PWD=/usr/droh”
—> “PRINTER=1ron”’
envp[O0] —> “USER=droh”

argv[argc] = NULL
argv[argc-1] —> “/usr/include”
—> “—1t”

argv[0] —> “Is”

Carnegie Mellon

execl and exec Family

m Int execl(char *path, char *arg0O, char *argl, .., 0)

m Loads and runs executable at path with args arg0, argl, ...
= pathisthe complete path of an executable object file
= By convention, argo is the name of the executable object file
= “Real” arguments to the program start with argl, etc.
= List of args is terminated by a (char *)0 argument

" Environment taken from char **environ, which points to an array
of “name=value” strings:

= USER=ganger
= LOGNAME=ganger
= HOME=/afs/cs.cmu.edu/user/ganger

m Returns -1 if error, otherwise doesn’t return!

m Family of functions includes execv, execve (base
function), execvp, execl, execle, and execlp

Carnegie Mellon

exec: Loading and Running Programs

main() {
iIT (fork() == 0) {
execl("'/usr/bin/cp', "cp', '"foo", "bar"™, 0);
}

waitt(NULL);
printf(’'copy completed\n');
ex1t();

Carnegie Mellon

Summary

m Exceptions

= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
® Only one can execute at a time, though

= Each process appears to have total control of
processor + private memory space

Carnegie Mellon

Summary (cont.)

m Spawning processes
= Callto fork
® One call, two returns

m Process completion
= Callexit
" One call, no return

m Reaping and waiting for Processes
= Callwartorwailtpid

m Loading and running Programs
= Callexecl (orvariant)
= One call, (normally) no return

	Introduction to Computer Systems�15-213, fall 2009�12th Lecture, Oct. 7th
	Last Time
	Cache Read
	Example: Direct Mapped Cache (E = 1)
	E-way Set Associative Cache (Here: E = 2)
	Strided Access Question
	The Strided Access Problem (Blackboard?)
	The Memory Mountain
	Pentium Blocked Matrix �Multiply Performance
	Today
	Control Flow
	Altering the Control Flow
	Exceptional Control Flow
	Exceptions
	Interrupt Vectors
	Asynchronous Exceptions (Interrupts)
	Synchronous Exceptions
	Trap Example: Opening File
	Fault Example: Page Fault
	Fault Example: Invalid Memory Reference
	Exception Table IA32 (Excerpt)
	Today
	Processes
	Concurrent Processes
	User View of Concurrent Processes
	Context Switching
	fork: Creating New Processes
	Understanding fork
	Fork Example #1
	Fork Example #2
	Fork Example #3
	Fork Example #4
	Fork Example #4
	exit: Ending a process
	Zombies
	Zombie�Example
	Nonterminating�Child Example
	wait: Synchronizing with Children
	wait: Synchronizing with Children
	wait() Example
	waitpid(): Waiting for a Specific Process
	execve: Loading and Running Programs
	execve: Example
	execl and exec Family
	exec: Loading and Running Programs
	Summary
	Summary (cont.)

