
Carnegie Mellon

Introduction to Computer Systems
15-213, fall 2009
15th Lecture, Oct. 19th

Instructors:

Majd Sakr and Khaled Harras

Carnegie Mellon

Today

� System level I/O

� Unix I/O

� Standard I/O

� RIO (robust I/O) package

� Conclusions and examples

Carnegie Mellon

Unix Files

� A Unix file is a sequence of m bytes:

� B0, B1, , Bk , , Bm-1

� All I/O devices are represented as files:
� /dev/sda2 (/usr disk partition)

� /dev/tty2 (terminal)

� Even the kernel is represented as a file:
� /dev/kmem (kernel memory image)

� /proc (kernel data structures)

Carnegie Mellon

Unix File Types

� Regular file

� File containing user/app data (binary, text, whatever)

� OS does not know anything about the format

� other than “sequence of bytes”, akin to main memory

� Directory file

� A file that contains the names and locations of other files

� Character special and block special files

� Terminals (character special) and disks (block special)

� FIFO (named pipe)

� A file type used for inter-process communication

� Socket

� A file type used for network communication between processes

Carnegie Mellon

Unix I/O
� Key Features

� Elegant mapping of files to devices allows kernel to export simple
interface called Unix I/O

� Important idea: All input and output is handled in a consistent and
uniform way

� Basic Unix I/O operations (system calls):

� Opening and closing files

� open()and close()

� Reading and writing a file

� read() and write()

� Changing the current file position (seek)

� indicates next offset into file to read or write

� lseek()
B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

Carnegie Mellon

Opening Files

� Opening a file informs the kernel that you are getting
ready to access that file

� Returns a small identifying integer file descriptor
� fd == -1 indicates that an error occurred

� Each process created by a Unix shell begins life with
three open files associated with a terminal:
� 0: standard input

� 1: standard output

� 2: standard error

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

Carnegie Mellon

Closing Files

� Closing a file informs the kernel that you are
finished accessing that file

� Closing an already closed file is a recipe for
disaster in threaded programs (more on this later)

� Moral: Always check return codes, even for
seemingly benign functions such as close()

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror("close");

exit(1);

}

Carnegie Mellon

Reading Files

� Reading a file copies bytes from the current file
position to memory, and then updates file position

� Returns number of bytes read from file fd into buf
� Return type ssize_t is signed integer

� nbytes < 0 indicates that an error occurred

� Short counts (nbytes < sizeof(buf)) are possible and are
not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

Carnegie Mellon

Writing Files

� Writing a file copies bytes from memory to the current
file position, and then updates current file position

� Returns number of bytes written from buf to file fd

� nbytes < 0 indicates that an error occurred

� As with reads, short counts are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");

exit(1);

}

Carnegie Mellon

Simple Unix I/O example

� Copying standard in to standard out, one byte at a time

int main(void)

{

char c;

int len;

while ((len = read(0 /*stdin*/, &c, 1)) == 1) {

if (write(1 /*stdout*/, &c, 1) != 1) {

exit(20);

}

}

if (len < 0) {

printf (“read from stdin failed”);

exit (10);

}

exit(0);

}

Carnegie Mellon

File Metadata
� Metadata is data about data, in this case file data

� Per-file metadata maintained by kernel
� accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st_mode; /* protection and file type */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device type (if inode device) */

off_t st_size; /* total size, in bytes */

unsigned long st_blksize; /* blocksize for filesystem I/O */

unsigned long st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last change */

};

Carnegie Mellon

Example of Accessing File Metadata
/* statcheck.c - Querying and manipulating a file’s meta data */

#include "csapp.h"

int main (int argc, char **argv)

{

struct stat stat;

char *type, *readok;

Stat(argv[1], &stat);

if (S_ISREG(stat.st_mode))

type = "regular";

else if (S_ISDIR(stat.st_mode))

type = "directory";

else

type = "other";

if ((stat.st_mode & S_IRUSR)) /* OK to read?*/

readok = "yes";

else

readok = "no";

printf("type: %s, read: %s\n", type, readok);

exit(0);

}

unix> ./statcheck statcheck.c

type: regular, read: yes

unix> chmod 000 statcheck.c

unix> ./statcheck statcheck.c

type: regular, read: no

unix> ./statcheck ..

type: directory, read: yes

unix> ./statcheck /dev/kmem

type: other, read: yes

Carnegie Mellon

Repeated Slide: Opening Files

� Opening a file informs the kernel that you are getting
ready to access that file

� Returns a small identifying integer file descriptor
� fd == -1 indicates that an error occurred

� Each process created by a Unix shell begins life with
three open files associated with a terminal:
� 0: standard input

� 1: standard output

� 2: standard error

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

Carnegie Mellon

How the Unix Kernel Represents Open
Files

� Two descriptors referencing two distinct open disk
files. Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat

struct

Carnegie Mellon

File Sharing
� Two distinct descriptors sharing the same disk file

through two distinct open file table entries
� E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A (terminal)

File B (disk)

Carnegie Mellon

How Processes Share Files:
Fork()

� A child process inherits its parent’s open files

� Note: situation unchanged by exec() functions

� Before fork() call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Carnegie Mellon

How Processes Share Files: Fork()

� A child process inherits its parent’s open files

� After fork():

� Child’s table same as parents, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

Carnegie Mellon

I/O Redirection

� Question: How does a shell implement I/O redirection?
unix> ls > foo.txt

� Answer: By calling the dup2(oldfd, newfd) function

� Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

Carnegie Mellon

I/O Redirection Example

� Step #1: open file to which stdout should be redirected

� Happens in child executing shell code, before exec()

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

Carnegie Mellon

I/O Redirection Example (cont.)

� Step #2: call dup2(4,1)

� cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

Carnegie Mellon

Today

� System level I/O

� Unix I/O

� Standard I/O

� RIO (robust I/O) package

� Conclusions and examples

Carnegie Mellon

Standard I/O Functions

� The C standard library (libc.a) contains a

collection of higher-level standard I/O functions

� Documented in Appendix B of K&R.

� Examples of standard I/O functions:
� Opening and closing files (fopen and fclose)

� Reading and writing bytes (fread and fwrite)

� Reading and writing text lines (fgets and fputs)

� Formatted reading and writing (fscanf and fprintf)

Carnegie Mellon

Standard I/O Streams

� Standard I/O models open files as streams

� Abstraction for a file descriptor and a buffer in memory.

� Similar to buffered RIO (later)

� C programs begin life with three open streams
(defined in stdio.h)

� stdin (standard input)

� stdout (standard output)

� stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

fprintf(stdout, "Hello, world\n");

}

Carnegie Mellon

Buffering in Standard I/O

� Standard I/O functions use buffered I/O

� Buffer flushed to output fd on “\n” or fflush()

call

printf("h");

h e l l o \n . .

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

Carnegie Mellon

Standard I/O Buffering in Action

� You can see this buffering in action for yourself,
using the always fascinating Unix strace

program:
linux> strace ./hello

execve("./hello", ["hello"], [/* ... */]).

...

write(1, "hello\n", 6...) = 6

...

_exit(0) = ?

#include <stdio.h>

int main()

{

printf("h");

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

exit(0);

}

Carnegie Mellon

Fork Example #2 (Earlier Lecture)

void fork2()

{

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("Bye\n");

}

� Key Points

� Both parent and child can continue forking

L0 L1

L1

Bye

Bye

Bye

Bye

Carnegie Mellon

Fork Example #2 (modified)

void fork2a()

{

printf("L0");

fork();

printf("L1\n");

fork();

printf("Bye\n");

}

� Removed the “\n” from the first printf

� As a result, “L0” gets printed twice

L0L1

L0L1

Bye

Bye

Bye

Bye

Carnegie Mellon

Repeated Slide: Reading
Files

� Reading a file copies bytes from the current file
position to memory, and then updates file position

� Returns number of bytes read from file fd into buf
� Return type ssize_t is signed integer

� nbytes < 0 indicates that an error occurred

� short counts (nbytes < sizeof(buf)) are possible and are
not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

Carnegie Mellon

Dealing with Short Counts

� Short counts can occur in these situations:

� Encountering (end-of-file) EOF on reads

� Reading text lines from a terminal

� Reading and writing network sockets or Unix pipes

� Short counts never occur in these situations:

� Reading from disk files (except for EOF)

� Writing to disk files

� One way to deal with short counts in your code:

� Use the RIO (Robust I/O) package from your textbook’s
csapp.c file (Appendix B)

Carnegie Mellon

Today

� System level I/O

� Unix I/O

� Standard I/O

� RIO (robust I/O) package

� Conclusions and examples

Carnegie Mellon

The RIO Package
� RIO is a set of wrappers that provide efficient and robust I/O in

apps,
such as network programs that are subject to short counts

� RIO provides two different kinds of functions

� Unbuffered input and output of binary data

� rio_readn and rio_writen

� Buffered input of binary data and text lines

� rio_readlineb and rio_readnb

� Buffered RIO routines are thread-safe and can be interleaved arbitrarily on the

same descriptor

� Download from
csapp.cs.cmu.edu/public/ics/code/src/csapp.c

csapp.cs.cmu.edu/public/ics/code/include/csapp.h

Carnegie Mellon

Unbuffered RIO Input and Output

� Same interface as Unix read and write

� Especially useful for transferring data on network
sockets

� rio_readn returns short count only if it encounters EOF

� Only use it when you know how many bytes to read

� rio_writen never returns a short count

� Calls to rio_readn and rio_writen can be interleaved arbitrarily

on the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);

ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon

Implementation of rio_readn
/*

* rio_readn - robustly read n bytes (unbuffered)

*/

ssize_t rio_readn(int fd, void *usrbuf, size_t n)

{

size_t nleft = n;

ssize_t nread;

char *bufp = usrbuf;

while (nleft > 0) {

if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* interrupted by sig handler return

*/

nread = 0; /* and call read() again */

else

return -1; /* errno set by read() */

}

else if (nread == 0)

break; /* EOF */

nleft -= nread;

bufp += nread;

}

return (n - nleft); /* return >= 0 */

}

Carnegie Mellon

Buffered I/O: Motivation

� I/O Applications Read/Write One Character at a Time

� getc, putc, ungetc

� gets

� Read line of text, stopping at newline

� Implementing as Calls to Unix I/O Expensive

� Read & Write involve require Unix kernel calls

� > 10,000 clock cycles

� Buffered Read

� Use Unix read() to grab block of bytes

� User input functions take one byte at a time from buffer

� Refill buffer when empty

unreadalready readBuffer

Carnegie Mellon

unread

Buffered I/O: Implementation

� For reading from file

� File has associated buffer to hold bytes that have
been read from file but not yet read by user code

� Layered on Unix File

already readBuffer

rio_buf
rio_bufptr

rio_cnt

unreadalready readnot in buffer unseen

Current File Position

Buffered Portion

Carnegie Mellon

Buffered I/O: Declaration

� All information contained in struct

typedef struct {

int rio_fd; /* descriptor for this internal buf */

int rio_cnt; /* unread bytes in internal buf */

char *rio_bufptr; /* next unread byte in internal buf */

char rio_buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

unreadalready readBuffer

rio_buf
rio_bufptr

rio_cnt

Carnegie Mellon

Buffered RIO Input Functions

� Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

� rio_readlineb reads a text line of up to maxlen bytes from
file fd and stores the line in usrbuf

� Especially useful for reading text lines from network sockets
� Stopping conditions

� maxlen bytes read

� EOF encountered
� Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

Buffered RIO Input Functions
(cont)

� rio_readnb reads up to n bytes from file fd

� Stopping conditions
� maxlen bytes read

� EOF encountered

� Calls to rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor

� Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

RIO Example

� Copying the lines of a text file from standard input to
standard output

#include "csapp.h"

int main(int argc, char **argv)

{

int n;

rio_t rio;

char buf[MAXLINE];

Rio_readinitb(&rio, STDIN_FILENO);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)

Rio_writen(STDOUT_FILENO, buf, n);

exit(0);

}

Carnegie Mellon

Today

� System level I/O

� Unix I/O

� Standard I/O

� RIO (robust I/O) package

� Conclusions and examples

Carnegie Mellon

Fun with File Descriptors (1)

� What would this program print for file containing
“abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char c1, c2, c3;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

fd2 = Open(fname, O_RDONLY, 0);

fd3 = Open(fname, O_RDONLY, 0);

Dup2(fd2, fd3);

Read(fd1, &c1, 1);

Read(fd2, &c2, 1);

Read(fd3, &c3, 1);

printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

return 0;

}

Carnegie Mellon

Fun with File Descriptors (2)

� What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1;

int s = getpid() & 0x1;

char c1, c2;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

Read(fd1, &c1, 1);

if (fork()) { /* Parent */

sleep(s);

Read(fd1, &c2, 1);

printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */

sleep(1-s);

Read(fd1, &c2, 1);

printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}

return 0;

}

Carnegie Mellon

Fun with File Descriptors (3)

� What would be the contents of the resulting file?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char *fname = argv[1];

fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);

Write(fd1, "pqrs", 4);

fd3 = Open(fname, O_APPEND|O_WRONLY, 0);

Write(fd3, "jklmn", 5);

fd2 = dup(fd1); /* Allocates descriptor */

Write(fd2, "wxyz", 4);

Write(fd3, "ef", 2);

return 0;

}

Carnegie Mellon

Accessing Directories

� Only recommended operation on a directory: read its
entries

� dirent structure contains information about a directory entry

� DIR structure contains information about directory while stepping
through its entries#include <sys/types.h>

#include <dirent.h>

{

DIR *directory;

struct dirent *de;

...

if (!(directory = opendir(dir_name)))

error("Failed to open directory");

...

while (0 != (de = readdir(directory))) {

printf("Found file: %s\n", de->d_name);

}

...

closedir(directory);

}

Carnegie Mellon

Unix I/O Key Characteristics

Classic Unix/Linux I/O:

�I/O operates on linear streams
of bytes

� Can reposition insertion point

and extend file at end

�I/O tends to be synchronous

� Read or write operation block

until data has been transferred

�Fine grained I/O

� One key-stroke at a time

� Each I/O event is handled by

the kernel and an appropriate

process

Mainframe I/O:

�I/O operates on structured
records

� Functions to locate, insert,

remove, update records

�I/O tends to be asynchronous

� Overlap I/O and computation

within a process

�Coarse grained I/O

� Process writes “channel

programs” to be executed by

the I/O hardware

� Many I/O operations are

performed autonomously with

one interrupt at completion

Carnegie Mellon

Unix I/O vs. Standard I/O vs. RIO

� Standard I/O and RIO are implemented using low-
level
Unix I/O

� Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

rio_readn

rio_writen

rio_readinitb

rio_readlineb

rio_readnb

RIO
functions

Carnegie Mellon

Choosing I/O Functions

� General rule: use the highest-level I/O functions you can

� Many C programmers are able to do all of their work using the
standard I/O functions

� When to use standard I/O

� When working with disk or terminal files

� When to use raw Unix I/O

� When you need to fetch file metadata

� In rare cases when you need absolute highest performance

� When to use RIO

� When you are reading and writing network sockets or pipes

� Never use standard I/O or raw Unix I/O on sockets or pipes

Carnegie Mellon

Pros and Cons of Unix I/O

� Pros

� Unix I/O is the most general and lowest overhead form of I/O.

� All other I/O packages are implemented using Unix I/O
functions.

� Unix I/O provides functions for accessing file metadata.

� Cons

� Dealing with short counts is tricky and error prone.

� Efficient reading of text lines requires some form of buffering,
also tricky and error prone.

� Both of these issues are addressed by the standard I/O and
RIO packages.

Carnegie Mellon

Pros and Cons of Standard I/O

� Pros:

� Buffering increases efficiency by decreasing the number of
read and write system calls

� Short counts are handled automatically

� Cons:

� Provides no function for accessing file metadata

� Standard I/O is not appropriate for input and output on
network sockets

� There are poorly documented restrictions on streams that
interact badly with restrictions on sockets

Carnegie Mellon

For Further Information
� The Unix bible:

� W. Richard Stevens & Stephen A. Rago, Advanced
Programming in the Unix Environment, 2nd Edition,
Addison Wesley, 2005

� Updated from Stevens’ 1993 book

� Stevens is arguably the best technical writer ever.

� Produced authoritative works in:

� Unix programming

� TCP/IP (the protocol that makes the Internet work)

� Unix network programming

� Unix IPC programming

� Tragically, Stevens died Sept. 1, 1999

� But others have taken up his legacy

