Carnegie Mellon

Introduction to Computer Systems

15-213, fall 2009
16t Lecture, Oct. 21t

Instructors:
Majd Sakr and Khaled Harras

Carnegie Mellon

Today

m Virtual memory (VM)
= Qverview and motivation
= VM as tool for caching
= VM as tool for memory management
= VM as tool for memory protection
= Address translation
" Allocation, multi-level page tables

Carnegie Mellon

Virtual Memory (Previous Lectures)

m Programs refer to virtual memory addresses 00-:----0
= movl (Y%ecx),%eax
= Conceptually very large array of bytes

= Each byte has its own address

= Actually implemented with hierarchy of different
memory types

= System provides address space private to particular
“process”

m Allocation: Compiler and run-time system
" Where different program objects should be stored
= All allocation within single virtual address space

m But why virtual memory?

m Why not physical memory?

Carnegie Mellon

Problem 1: How Does Everything Fit?

64-bit addresses: Physical main memory:
16 Exabyte Few Gigabytes

And there are many processes

Carnegie Mellon

Problem 2: Memory Management

Physical main memory

Process 1
stack
Process 2 heap What
at goes
Process 3 X _text where?
.data

Process n

Carnegie Mellon

Problem 3: How To Protect

Physical main memory
- >
Process j

Problem 4: How To Share?

Physical main memory

Process i \
Process j /

Solution: Level Of Indirection

Virtual memory

Process 1

Physical memory

mapping

Virtual memory

Process n

m Each process gets its own private memory space
m Solves the previous problems

Carnegie Mellon

Address Spaces

m Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3...}

m Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3, .., N-1}

m Physical address space: Set of M = 2™ physical addresses
{0,1, 2,3, .. M-1}

m Clean distinction between data (bytes) and their attributes (addresses)
m Each object can now have multiple addresses

m Every byte in main memory:
one physical address, one (or more) virtual addresses

Carnegie Mellon

A System Using Physical Addressing

Main memory

0:
1:
. 2:
Physical address 3.
(PA))
CPU > 4.
Y 5:
6:
7:
8:
M-1
Data word

m Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

Carnegie Mellon

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address ;
(VA) (PA) '
CPU > MMU > 4
5:
'T‘ 6:
7:
8:
M-1:
Data word

m Used in all modern desktops, laptops, workstations
m One of the great ideas in computer science
m MMU checks the cache

Why Virtual Memory (VM)?

m Efficient use of limited main memory (RAM)
= Use RAM as a cache for the parts of a virtual address space
= some non-cached parts stored on disk

= some (unallocated) non-cached parts stored nowhere
= Keep only active areas of virtual address space in memory
= transfer data back and forth as needed

m Simplifies memory management for programmers
= Each process gets the same full, private linear address space

m Isolates address spaces
" One process can’t interfere with another’s memory
= because they operate in different address spaces
= User process cannot access privileged information
= different sections of address spaces have different permissions

Carnegie Mellon

Today

m Virtual memory (VM)
= QOverview and motivation
= VM as tool for caching
® VM as tool for memory management
® VM as tool for memory protection
= Address translation
" Allocation, multi-level page tables

Carnegie Mellon

VM as a Tool for Caching

m Virtual memory: array of N = 2" contiguous bytes

= think of the array (allocated part) as being stored on disk
m Physical main memory (DRAM) = cache for allocated virtual memory
m Blocks are called pages; size = 2P

Virtual memory Physical memory

0
VP 0 | Unallocated
0

VP 1 | Cached Empty PPO
Uncached \ PP 1
:) Unallocated Empty
. — Cached
D I S k Uncached >< Empty
Cached PP 2m-p-1

VP 2n-0-1 | Uncached 2

2"-1

Virtual pages (VP's) Physical pages (PP's)
stored on disk cached in DRAM

Carnegie Mellon

Memory Hierarchy: Core 2 Duo Not drawn to scale

L1/L2 cache: 64 B blocks

~4 MIB ~4 GB ~500 GB
L1
I-cache
sz q Main
32 KB unifie Memor
cache Y
(o Reg L1
U D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles .
Latency: 3 cycles 14 cycles 100 cycles millions D | S k

Miss penalty (latency): 30x

alty (latency): 30,000x

Carnegie Mellon

DRAM Cache Organization

m DRAM cache organization driven by the enormous miss penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM
= For first byte, faster for next byte

m Consequences
= Large page (block) size: typically 4-8 KB, sometimes 4 MB
= Fully associative
= Any VP can be placed in any PP
= Requires a “large” mapping function — different from CPU caches
= Highly sophisticated, expensive replacement algorithms
= Too complicated and open-ended to be implemented in hardware
= Write-back rather than write-through

Carnegie Mellon

Address Translation: Page Tables

m A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages. Here: 8 VPs
= Per-process kernel data structure in DRAM

Physical memory

Physical page (DRAM)
number or T
Valid disk address PP O
PTEO[0 null VP2
./—4 VP 7
1 ./—4 VP4 PP 3
1
0 e
1 o/"\t/
0 null ¢ Virtual memory
0 &\/ \\\ (dlSk)
PTETL e = . VP 1
Memory resident ~~_ . AN . VP 2
page table Sso ~a
(DRAM) s vP3
‘\\ VP4
VP 6
VP 7

Carnegie Mellon

Address Translation With a Page Table

Virtual address
Page table
base register Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process)Valid Physical page number (PPN)
>
Valid bit = 0:
page not in memory €
(page fault)
\ 4 \ 4

Physical page number (PPN) Physical page offset (PPO)

Physical address

Page Hit

Carnegie Mellon

m Page hit: reference to VM word that is in physical memory

Virtual address

Physical memory

Physical page (DRAM)
number or T
Valid disk address / Y PPO
PTEO 0 null :/ VP2
1 ./4 VP 4 PP 3
> 1
0 e
1 ./"\t/
0 null S« Virtual memory
0 &\/ \\\ (dlSk)
T C — Tee VP 1
Memory resident \\ \\ VP 2
page table Sso ~a
(DRAM) s vP3
‘\\ VP4
VP 6
VP 7

Page Miss

Carnegie Mellon

m Page miss: reference to VM word that is not in physical

memory

Virtual address

Physical memory

Physical page (DRAM)
number or T
Valid disk address PP O
PTEO[0 null VP2
./—4 VP 7
: ./4 VP 4 PP3
1
> 0 e
1 ./"\t/
0 null S« Virtual memory
0 &\/ \\\ (dlSk)
T C — Tee VP 1
Memory resident \\ \\ VP 2
page table Sso ~a
(DRAM) s vP3
‘\\ VP4
VP 6
VP 7

Handling Page Fault

m Page miss causes page fault (an exception)

Virtual address

PTEO

PTE 7

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or p—
Valid disk address PP O
0 null / VP 2
/4 VP 7
1
0 e
1 ./"\t/
0 null S« Virtual memory
0 o« ~ | . (disk)
: A - T~ VP 1
Memory resident ~~_ VP 2
page table ~a
(DRAM) VP3
. VP4
VP 6
VP 7

Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or p—
Valid disk address PP O
0 null / VP 2
/4 VP 7
1
0 e
1 ./"\t/
0 null S« Virtual memory
0 o« ~ | . (disk)
: A - T~ VP 1
Memory resident ~~_ VP 2
page table ~a
(DRAM) VP3
. VP4
VP 6
VP 7

Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or TP
Valid disk address
0 null / VP 2
e VP 7
1 ./4 VP 3
1
1 — |
0 0\
0 null Virtual memory
0 / X (disk)
1 ‘/ S I N VP 1
Memory resident ~~_ \\ VP 2
page table DTN
(DRAM) \\ .~ VP 3
‘\\ VP4
VP 6
VP 7

PPO

PP 3

Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

m Offending instruction is restarted: page hit!

Virtual address

Physical memory

Physical page (DRAM)
number or T
Valid disk address PP O
PTEO[0 null VP2
./—4 VP 7
1 ./—4 VP 3 PP 3
1
0 o
0 null Virtual memory
0 / \ (disk)
PTE7[1 / Sl BN V1
Memory resident ~~_ \\ VP2
page table DTN
(DRAM) Ssol s VP3
‘\\ VP4
VP 6
VP 7

Carnegie Mellon

Why does it work? Locality

m Virtual memory works because of locality

m At any point in time, programs tend to access a set of active
virtual pages called the working set

" Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
" Good performance for one process after compulsory misses

m If (SUM(working set sizes) > main memory size)

" Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

Carnegie Mellon

Today

m Virtual memory (VM)
= Qverview and motivation
" VM as tool for caching
= VM as tool for memory management
= VM as tool for memory protection
= Address translation
" Allocation, multi-level page tables

Carnegie Mellon

VM as a Tool for Memory Management

m Key idea: each process has its own virtual address space
" |t can view memory as a simple linear array
" Mapping function scatters addresses through physical memory
= Well chosen mappings simplify memory allocation and management

Address .
Virtual 0 ; lati 0 Physical
Address VP 1 w} Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)
: 0
Virtual >/ Pps
Address VP 1
Space for VP 2
Process 2:

N-1 M-1

Carnegie Mellon

VM as a Tool for Memory Management

m Memory allocation

® Each virtual page can be mapped to any physical page

= Avirtual page can be stored in different physical pages at different times
m Sharing code and data among processes

= Map virtual pages to the same physical page (here: PP 6)

0 Address 0

Virtual ; lati Physical
Address VP 1 w} Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)
: 0
Virtual >/ Pps
Address VP 1
Space for VP 2
Process 2:

N-1 M-1

Simplifying Linking and Loading

Memory
. invisible to
Kernel virtual memory
« 1. 0xc0000000 user code
L Llnklng User stack
= Each program has similar virtual [z €1 TG, <« %esp
address space v (stack
= Code, stack, and shared libraries 1 pointer)
always start at the same address Memory-mapped region for
shared libraries
0x40000000
m Loading T
= execve() allocates virtual pages <« brk
for .text and .data sections Run-time heap
= creates PTEs marked as invalid (created by mal loc)
.
are copied, page by page, on (.data, .bss) from
demand by the virtual memory the
Read-only segment executable
system (.init, .text, .rodata) file
0Xx08048000 J
Unused

0

Carnegie Mellon

Today

m Virtual memory (VM)
= QOverview and motivation
® VM as tool for caching
® VM as tool for memory management
= VM as tool for memory protection
= Address translation
" Allocation, multi-level page tables

Carnegie Mellon

VM as a Tool for Memory Protection

m Extend PTEs with permission bits

m Page fault handler checks these before remapping
= |f violated, send process SIGSEGV (segmentation fault)

Physical
Process i: SUP READ WRITE Address Address Space
VP 0: No Yes No PP 6
VP 1: No Yes Yes PP 4
VP 2:| Yes Yes Yes PP 2 —> ke
. PP 4
o
PP 6
Process j: SUP READ WRITE Address PP 8
VP 0: No Yes No PP 9 / —! PP9
VP 1:| Yes Yes Yes PP 6
VP 2: No Yes Yes PP 11 —> PP11

Carnegie Mellon

Today

m Virtual memory (VM)
= QOverview and motivation
® VM as tool for caching
® VM as tool for memory management
® VM as tool for memory protection
= Address translation
" Allocation, multi-level page tables

Address Translation: Page Hit
(2

CPU Chip PTEA)
2 < PTE
>
L S © Cache/
PA > Memory

Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Carnegie Mellon

Address Translation: Page Fault

Exception
j—— === == > Page fault handler
| O
I
I
| 2 Jvt
L Chlp I PTEA Victim page
" ’ o
CPU VA 5 mmu e—FF Cache/ .
Disk
o o Memory

New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Carnegie Mellon

Speeding up Translation with a TLB

m Page table entries (PTEs) are cached in L1 like any other
memory word
" PTEs may be evicted by other data references
" PTE hit still requires a 1-cycle delay

m Solution: Translation Lookaside Buffer (TLB)
= Small hardware cache in MMU
= Maps virtual page numbers to physical page numbers
" Contains complete page table entries for small number of pages

Carnegie Mellon

TLB Hit
CPU Chip -
o PTE
VPN e
(1)

CPU VA __ 51 mmu 3 > cache/

] Memory
Data

A TLB hit eliminates a memory access

Carnegie Mellon

TLB Miss

CPU Chip

TLB
4
o PTE
VPN
(1 3
VA PTEA
CPU > MMU > Cache/
PA s| Memory
5
Data
6

A TLB miss incurs an add’l memory access (the PTE)
Fortunately, TLB misses are rare

Carnegie Mellon

Simple Memory System Example
m Addressing

" 14-bit virtual addresses
= 12-bit physical address
= Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

VPN > VPO

v

Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

A

)4

PPN PPO
Physical Page Number Physical Page Offset

v

Carnegie Mellon

Simple Memory System Page Table

Only show first 16 entries (out of 256)

VPN | PPN | Valid VPN | PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 O0A 09 1
03 02 1 0B - 0
04 - 0 0C - 0
05 16 1 oD 2D 1
06 - 0 OE 11 1
07 - 0 OF oD 1

Simple Memory System TLB

m 16 entries

m 4-way associative

A

TLBBT ——————>< TLBI —

Carnegie Mellon

13 12 11 10 9 8 7 6 5 4 3 2 1 0
< VPN > VPO >
Set Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid
0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0

Carnegie Mellon

Simple Memory System Cache

m 16 lines, 4-byte block size
m Physically addressed
m Direct mapped

4 CT > < Cl >4 coO —
11 10 9 8 7 6 5 4 3 2 1 0

< PPN e PPO >

ldx Tag Valid BO B1 B2 B3 ldx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 o 12 0 - - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 Cc2 DF 03 F 14 0 - - - -

Carnegie Mellon

Address Translation Example #1

Virtual Address: 0x03D4

< TLBT ><— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

o,o0|0}0|1;1}1,1,01 01 0|0

A

VPN

) 4
A

v

VPO

VPN Ox0F TLBI 3 TLBT 0x03 TLB Hit? Y Page Fault? N ppN:0x0D

Physical Address

< cT

v
A
o
%
(@)
@)
|

11 10 9 8 7 6 5 4 3 2 1 0

A

PPN

4
A
v
v
o
v

co_0 CI10x5 CT 0x0D Hit? Y Byte: 0x36

Carnegie Mellon

Address Translation Example #2

Virtual Address: OxXOB8F

« TLBT ><— TLBI —
13 12 11 10 9 8 7 6 5 4

o, o0|10|1;1}1,0,00 1 1|1 1

A

v

VPN > VPO

VPN Ox2E TLBI_2 TLBT Ox0B TLB Hit? N Page Fault? Y~ PPN: TBD

Physical Address

« cT

v
A
o
%
(@)
@)
|

11 10 9 8 7 6 5 4 3 2 1 0

A

PPN

Yy
A
v
v
o
v

co Cl cT Hit? Byte:

Carnegie Mellon

Address Translation Example #3

Virtual Address: 0x0020

< TLBT ><— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

o,o0|0|0|0O0| 0| 0|0 |1 OO0 jO0O|O0]|O

A

v

VPN - VPO

VPN 0x00 TLBI O TLBT 0x00 TLB Hit? N Page Fault? N PPN:0x28

Physical Address

< cT

v
A
o
%
(@)
@)
|

11 10 9 8 7 6 5 4 3 2 1 0

A

PPN

4
A
v
v
o
v

Co_0 Cl0x8 (T 0x28 Hit? N Byte: Mem

Carnegie Mellon

Summary

m Programmer’s view of virtual memory
" Each process has its own private linear address space
= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point
to check permissions

Carnegie Mellon

Today

m Virtual memory (VM)
= QOverview and motivation
® VM as tool for caching
® VM as tool for memory management
® VM as tool for memory protection
= Address translation
= Allocation, multi-level page tables

Allocating Virtual Pages

m Example: Allocating VP5

PTEO

PTE 7

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or T
Valid disk address PP O
0 null / VP2
e VP 7
1 ./—4 VP 3 PP 3
1
1 /‘
0 o
0 null Virtual memory
0 [N / N o (disk)
1 T o VP 1
Memory re;:dent \\ Sao VP 2
page table VRN
(DRAM) TR VP3
‘\\ VP4
VP 6
VP 7

Allocating Virtual Pages

m Example: Allocating VP 5

m Kernel allocates VP 5 on disk and points PTE 5 to it

Physical memory

Physical page (DRAM)
number or VP 1
Valid disk address / VP
PTEO| o n':ll/é/v P2
g ./4 VP 3
1
1 — |
0 hal Virtual memory
0 &~ (disk)
0 O N VP 1
PTE7 |1 LS SRR
Memory resident\\\ \\\\ vp2
page table TN TNl ey VP3
(DRAM) RN N VP4
Y VP 5
VP 6

VP 7

Carnegie Mellon

PPO

PP 3

Carnegie Mellon

Multi-Level Page Tables

m Given: Level 2
= 4AKB (212) page size Tables
= 48-bit address space
= 4-byte PTE

m Problem: Level 1
= Would need a 256 GB page table! Table

- 248 * 2—12 * 22 - 238 bytes 7 /

—

m Common solution
= Multi-level page tables
= Example: 2-level page table
= Level 1 table: each PTE points to a page table

= Level 2 table: each PTE points to a page
(paged in and out like other data)

= Level 1 table stays in memory
= Level 2 tables paged in and out

Carnegie Mellon

A Two-Level Page Table Hierarchy

Level 1 Level 2
page table page tables
PTE 0 — [ereo
PTE 1
PTE 2 (null) PTE 1023
PTE 3 (null)
PTE 4 (null) PTE 0
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null)
PTE 8 >
1023 null
(1K - 9) PTEs
null PTEs PTE 1023

/

Virtual

memory

VPO

VP 1023

VP 1024

VP 2047

Gap

> 2K allocated VM pages
for code and data

J

> 6K unallocated VM pages

1023
unallocated
pages

VP 9215

J
} 1023 unallocated pages

1 allocated VM page

for the stack

Carnegie Mellon

Translating with a k-level Page Table

Virtual Address
n-1 p-1 0
+ VPN1 » VPN2 + VPNKk VPO
%(_/
Level 1 Level 2 Level k
page table page table . page table
” : » PPN |}—
m-1 v p-1 v 0
PPN PPO

Physical Address

	Introduction to Computer Systems�15-213, fall 2009�16th Lecture, Oct. 21st
	Today
	Virtual Memory (Previous Lectures)
	Problem 1: How Does Everything Fit?
	Problem 2: Memory Management
	Problem 3: How To Protect
	Solution: Level Of Indirection
	Address Spaces
	A System Using Physical Addressing
	A System Using Virtual Addressing
	Why Virtual Memory (VM)?
	Today
	VM as a Tool for Caching
	Memory Hierarchy: Core 2 Duo
	DRAM Cache Organization
	Address Translation: Page Tables
	Address Translation With a Page Table
	Page Hit
	Page Miss
	Handling Page Fault
	Handling Page Fault
	Handling Page Fault
	Handling Page Fault
	Why does it work? Locality
	Today
	VM as a Tool for Memory Management
	VM as a Tool for Memory Management
	Simplifying Linking and Loading
	Today
	VM as a Tool for Memory Protection
	Today
	Address Translation: Page Hit
	Address Translation: Page Fault
	Speeding up Translation with a TLB
	TLB Hit
	TLB Miss
	Simple Memory System Example
	Simple Memory System Page Table
	Simple Memory System TLB
	Simple Memory System Cache
	Address Translation Example #1
	Address Translation Example #2
	Address Translation Example #3
	Summary
	Today
	Allocating Virtual Pages
	Allocating Virtual Pages
	Multi-Level Page Tables
	A Two-Level Page Table Hierarchy
	Translating with a k-level Page Table

