Carnegie Mellon

Introduction to Computer Systems

15-213, fall 2009
215t Lecture, Nov. 9th

Instructors:
Majd Sakr and Khaled Harras

Carnegie Mellon

Today

m Programmer’s view of the internet
m Sockets interface

Carnegie Mellon

A Programmer’s View of the Internet

m Hosts are mapped to a set of 32-bit /P addresses
= 128.2.203.179

m The set of IP addresses is mapped to a set of identifiers
called Internet domain names

= 128.2.203.179 is mapped to www.cs.cmu.edu

m A process on one Internet host can communicate with a
process on another Internet host over a connection

Carnegie Mellon

IP Addresses

m 32-bit IP addresses are stored in an IP address struct

= |P addresses are always stored in memory in network byte order
(big-endian byte order)

" True in general for any integer transferred in a packet header from one
machine to another.

= E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct 1n_addr {

unsigned int s _addr; /* network byte order (big-endian) */

};

Useful network byte-order conversion functions:

htonl : convert long int from host to network byte order
htons: convert short int from host to network byte order
ntohl : convert long int from network to host byte order
ntohs: convert short int from network to host byte order

Carnegie Mellon

Dotted Decimal Notation

m By convention, each byte in a 32-bit IP address is represented
by a string: decimal values for bytes, separated by a period
= [P address: OX8002C2F2 = Blackboard?

Carnegie Mellon

Dotted Decimal Notation

m By convention, each byte in a 32-bit IP address is represented
by a string: decimal values for bytes, separated by a period
= [P address: OxX8002C2F2 = 128.2.194.242

m Functions for converting between binary IP addresses and
dotted decimal strings:
= pnet_aton: dotted decimal string = IP address in network byte order
= pnet_ntoa: IP address in network byte order - dotted decimal string

= “n” denotes network representation
= “3” denotes application representation

Carnegie Mellon

IP Address Structure
m [P (V4) Address space divided into classes:
0123 8 16 24 31
ClassA |0| NetID Host ID
ClassB 1|0 Net ID Host ID
ClassC (1|1]0 Net ID Host ID
ClassD |1|1|1(0| Multicast address
ClassE |1|1{1|1| Reserved for experiments

m Network ID written in form w.x.y.z/n

" n =number of bits in net id (yellow part above)
= E.g.,, CMU written as 128.2.0.0/16
= Which class is that?

m Unrouted (private) IP addresses:
= 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

m Nowadays: CIDR (Classless interdomain routing)

Carnegie Mellon

Internet Domain Names

unnamed root
.net /.edu\ .gOV .com\ First-level domain names
mit cmu berkeley amazon Second-level domain names
cS ece WWW Third-level domain names
/ \ 208.216.181.15
cTcI pdl
kittyhawk imperial

128.2.194.242 128.2.189.40

Carnegie Mellon

Domain Naming System (DNS)

m The Internet maintains a mapping between IP addresses and
domain names in a huge worldwide distributed DNS database

" Conceptually, programmers can view the DNS database as a collection of
millions of host entry structures:

/* DNS host entry structure */
struct hostent {
char *h_name; /* official domain name of host */
char **h_aliases; /* null-terminated array of domain names */
int h_addrtype; /* host address type (AF_INET) */
int h_length; /* length of an address, In bytes */
char **h_addr_list; /* null-terminated array of iIn_addr structs
*/
1>

m Functions for retrieving host entries from DNS:

= gethostbyname: query key is a DNS domain name
= gethostbyaddr: query key is an IP address

Properties of DNS Host Entries

m Each host entry is an equivalence class of domain names and
IP addresses

m Each host has a locally defined domain name localhost
which always maps to the loopback address 127 .0.0.1

m Different kinds of mappings are possible:

= Simple case: one-to-one mapping between domain name and IP address:
= kittyhawk.cmcl.cs.cmu.edu mapsto 128.2.194.242

" Multiple domain names mapped to the same IP address:
= eecs.mit.edu and cs.mit.edu bothmapto 18.62.1.6

" Multiple domain names mapped to multiple IP addresses:
= aol.com and www.aol .com map to multiple IP addresses

= Some valid domain names don’t map to any IP address:
= for example:cmcl.cs.cmu.edu

A Program That Queries DNS

int main(int argc, char **argv) { /7* argv[l] is a domain name */
char **pp; /* or dotted decimal IP addr */
struct 1In_addr addr;
struct hostent *hostp;

iIf (inet_aton(argv[l], &addr) != 0)
hostp = Gethostbyaddr((const char *)&addr, sizeof(addr),
AF_INET);
else
hostp = Gethostbyname(argv[1l]);
printf(""official hostname: %s\n', hostp->h_name);

for (pp = hostp->h_aliases; *pp != NULL; pp++)
printf(alias: %s\n", *pp);

for (pp = hostp->h_addr_list; *pp '= NULL; pp++) {
addr.s_addr = ((struct i1in_addr *)*pp)->s_addr;
printf("'address: %s\n', inet ntoa(addr));

Querying DNS from the Command Line

m Domain Information Groper (d1Q) provides a scriptable
command line interface to DNS

Iinux> dig +short kittyhawk.cmcl.cs.cmu.edu
128.2.194.242

Iinux> dig +short -x 128.2.194.242
KITTYHAWK.CMCL.CS.CMU.EDU.

Iinux> dig +short aol.com
205.188.145.215

205.188.160.121

64.12.149.24

64.12.187.25

Iinux> dig +short -x 64.12.187.25
aol-v5._websys.aol .com.

Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections:

= Point-to-point, full-duplex (2-way communication), and reliable.

m A socket is an endpoint of a connection
= Socket address is an IPaddress:port pair

m A portis a 16-bit integer that identifies a process:

= Ephemeral port: Assigned automatically on client when client makes a
connection request

= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

m A connection is uniquely identified by the socket addresses
of its endpoints (socket pair)
= (cliaddr:cliport, servaddr:servport)

Carnegie Mellon

Putting it all Together:
Anatomy of an Internet Connection

Client socket address Server socket address
128.2.194.242:51213 :80
/ \ Server
Connection socket pair (port 80)
(128.2.194.242:51213, :80)

Client host address Server host address
128.2.194.242

51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers

Carnegie Mellon

Clients

m Examples of client programs
= Web browsers, ftp, telnet, ssh

m How does a client find the server?

= The IP address in the server socket address identifies the host
(more precisely, an adapter on the host)

= The (well-known) port in the server socket address identifies the
service, and thus implicitly identifies the server process that performs
that service.

= Examples of well know ports
= Port 7: Echo server
= Port 23: Telnet server
= Port 25: Mail server
= Port 80: Web server

Carnegie Mellon

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

) (i.e., the Web server)
Client

Web server
(port 80)

) 4

Kernel

Echo server
(port 7)

Service request for
128.2.194.242:7

. (i.e., the echo server)
Client

Web server
(port 80)

) 4

Kernel

Echo server

(port 7)

Carnegie Mellon

Servers

m Servers are long-running processes (daemons)

" Created at boot-time (typically) by the init process (process 1)
® Run continuously until the machine is turned off

m Each server waits for requests to arrive on a well-known port
associated with a particular service
= Port 7: echo server
= Port 23: telnet server
= Port 25: mail server
" Port 80: HTTP server

m A machine that runs a server process is also often referred to
as a “server”

Carnegie Mellon

Server Examples
m Web server (port 80)

= Resource: files/compute cycles (CGl programs)
= Service: retrieves files and runs CGI programs on behalf of the client

m FTP server (20, 21) See /etc/services for a
= Resource: files comprehensive list of the port
= Service: stores and retrieve files mappings on a Linux machine

m Telnet server (23)
= Resource: terminal
= Service: proxies a terminal on the server machine

m Mail server (25)
= Resource: email “spool” file
= Service: stores mail messages in spool file

Carnegie Mellon

Today

m Programmer’s view of the internet
m Sockets interface

Carnegie Mellon

Sockets Interface

m Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols

m Provides a user-level interface to the network
m Underlying basis for all Internet applications

m Based on client/server programming model

Carnegie Mellon

Sockets

m What is a socket?

= To the kernel, a socket is an endpoint of communication

" To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix I/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

Client l‘ ‘l Server

clientfd serverfd

m The main distinction between regular file /0 and socket
1/0 is how the application “opens” the socket descriptors

Overview of the Sockets Interface

Client Server
N
(socket socket
bind > open_listenfd
open_clientfd < l
listen
Connection l /
request
\ connect [------------- > accept <
\4 \4
Client / » rio_writen »rio_readlinebi«
Server ! ! . .
Session _ i : : Await connection
rio_readlineb |« rio_writen request from
next client
\4 \4
close [----- EOF_____ »rio_readlineb
\ 4
close

Socket Address Structures

m Generic socket address:
" For address arguments to connect, bind, and accept

= Necessary only because C did not have generic (void *) pointers
when the sockets interface was designed

struct sockaddr {
unsigned short sa family; /* protocol family */
char sa data[14]; /* address data. */
}:
sa_family
— _J
V

Family Specific

Carnegie Mellon

Socket Address Structures

m Internet-specific socket address:

= Must cast (sockaddr_1n *)to (sockaddr *)for connect,
bind, and accept

struct sockaddr_in {
unsigned short sin_family; /* address family (always AF _INET) */
unsigned short sin_port; /* port num in network byte order */
struct 1In_addr sin_addr; /* 1P addr i1n network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */

¥

sin_port sin_addr

AF_INET Ol0|0|O0O|0O0|0O0]|]0O0]O0

sa_Tfamily -

Family Specific

Example: Echo Client and Server

On Server

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 7 bytes: 456789

On Client

kittyhawk> echoclient bass 5000
Enter message: 123

Echo: 123

Enter message: "D

kittyhawk> echoclient bass 5000
Enter message: 456789

Echo: 456789

Enter message: "D

kittyhawk>

Carnegie Mellon

Echo Client Main Routine

#include "‘csapp.h"

/* usage: ./echoclient host port */
int main(int argc, char **argv)
{
int clientfd, port;
char *host, buf[MAXLINE];
rio t rio;
host = argv|[1l]; port = atoi(argv[2]);
clientfd = Open_clientfd(host, port);
Rio_readinitb(&rio, clientfd);
printf("'Enter message:''); fflush(stdout);
server —~ while (Fgets(buf, MAXLINE, stdin) !'= NULL) {
Receive line 55555“*-Rio_write?(clieand, buf, strien(buf));
from server » R1o_readlineb(&rio, buf, MAXLINE);
printf("'Echo:"");
Fputs(buf, stdout);
printf("'Enter message:'); fflush(stdout);

Send line to

+
Close(clientfd);

exi1t(0);

Carnegie Mellon

Overview of the Sockets Interface

Client Server

socket socket
bind > open_listenfd
open_clientfd < |

listen

Connection l /

request
connect [------------- > accept

Carnegie Mellon

Echo Client: open_clientfd

int open_clientfd(char *hostname, int port) { |

int clientfd; This function opens a connection
struct hostent *hp; from the client to the server at
struct sockaddr_in serveraddr; hostname:port
iIT ((clientfd = socket(AF_INET, SOCK STREAM, 0)) < 0) Create

return -1; /* check errno for cause of error */ socket
/* Fill 1In the server"s IP address and port */)
IT ((hp = gethostbyname(hostname)) == NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr)); >Create
serveraddr.sin_family = AF_INET; address
bcopy((char *)hp->h_addr_list[0],

(char *)é&serveraddr.sin_addr.s addr, hp-)

>h_length);
serveraddr.sin_port = htons(port);

/* Establish a connection with the server */ .
if (connect(clientfd, (SA *) &serveraddr, Establish
sizeof(serveraddr)) < 0)

return -1;
return clientfd;

connection

Carnegie Mellon

Echo Client: open_clientfd
(socket)

m socket creates a socket descriptor on the client
= Just allocates & initializes some internal data structures
= AF_INET: indicates that the socket is associated with Internet protocols
= SOCK _ STREAM: selects a reliable byte stream connection
= provided by TCP

int clientfd; /* socket descriptor */

IT ((clientfd = socket(AF _INET, SOCK _STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

- <more>

Carnegie Mellon

Echo Client: open_clientfd
(gethostbyname)

m The client then builds the server’s Internet address

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

/* Till 1n the server"s IP address and port */

IT ((hp = gethostbyname(hostname)) == NULL)
return -2; /* check h_errno for cause of error */

bzero((char *) &serveraddr, sizeof(serveraddr)); Check

serveraddr.sin_family = AF_INET; this out!
serveraddr.sin_port = htons(port); ‘?________———"'———————— '
bcopy((char *)hp->h_addr_list|[O0],

(char *)&serveraddr.sin_addr.s addr, hp->h_length);

Carnegie Mellon

A Careful Look at bcopy Arguments

/* DNS host entry structure */
struct hostent {

int h_length; /* length of an address, i1n bytes */
char **h_addr_list; /* null-terminated array of in_addr structs */

¥

struct sockaddr_in {

struct In_addr sin_addr; /* 1P addr in network byte order */

};- - /* Internet address structure */
struct in_addr {

unsigned iInt s _addr; /* network byte order (big-endian) */

¥

struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

bcopy((char *)hp->h_addr_list[0], /* src, dest */
(char *)&serveraddr.sin_addr.s_addr, hp->h_length);

Carnegie Mellon

Echo Client: open_clientfd
(connect)

m Finally the client creates a connection with the server

= Client process suspends (blocks) until the connection is created
= After resuming, the client is ready to begin exchanging messages with the
server via Unix |/O calls on descriptor cl 1entfd

/* socket descriptor */
/* server address */
/* generic sockaddr */

int clientfd;
struct sockaddr_in serveraddr;
typedef struct sockaddr SA;

/* Establish a connection with the server */
IT (connect(clientfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)

return -1;
return clientfd;

Carnegie Mellon

Echo Server: Main Routine

int main(int argc, char **argv) {
int listenfd, connfd, port, clientlen;
struct sockaddr_in clientaddr;
struct hostent *hp;
char *haddrp;

port = atoi(argv[1l]); /7* the server listens on a port passed
on the command line */
listenfd = open_listenfd(port);

whille (1) {

clientlen = sizeof(clientaddr);

connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,
sizeof(clientaddr.sin_addr.s addr), AF _INET);

haddrp = i1net_ntoa(clientaddr.sin_addr);

printf('server connected to %s (%s)\n", hp->h_name, haddrp);

echo(connfd);

Close(connfd);

Carnegie Mellon

Overview of the Sockets Interface

Client Server

socket socket
bind > open_listenfd
open_clientfd < |

listen

Connection l /

request
connect [------------- > accept

Carnegie Mellon

Echo Server: open_listenfd

int open_listenfd(int port)
{
int listenfd, optval=1;
struct sockaddr _in serveraddr;

/* Create a socket descriptor */
IT ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

/* Eliminates ""Address already in use' error from bind. */
IT (setsockopt(listenfd, SOL_SOCKET, SO REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

- <more>

Echo Server: open_listenfd (cont.)

/* Listenfd will be an endpoint for all requests to port
on any IP address for this host */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s _addr = htonl (INADDR_ANY);
serveraddr.sin_port = htons((unsigned short)port);
iIT (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)

return -1;

/* Make i1t a listening socket ready to accept
connection requests */
iIf (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;

}

Carnegie Mellon

Echo Server: open_listenfd
(socket)

m Socket creates a socket descriptor on the server
= AF_INET: indicates that the socket is associated with Internet protocols
= SOCK_STREAM: selects a reliable byte stream connection (TCP)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
IT ((listenfd = socket(AF_INET, SOCK STREAM, 0)) < 0)
return -1;

Carnegie Mellon

Echo Server: open_listenfd
(setsockopt)

m The socket can be given some attributes

/* Eliminates ""Address already In use' error from bind(). */
IT (setsockopt(listenfd, SOL SOCKET, SO REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

m Handy trick that allows us to rerun the server immediately
after we kill it
= QOtherwise we would have to wait about 15 seconds
= Eliminates “Address already in use” error from bind()

m Strongly suggest you do this for all your servers to simplify
debugging

Carnegie Mellon

Echo Server: open_listenfd
(initialize socket address)

m Initialize socket with server port number
m Accept connection from any IP address

struct sockaddr_in serveraddr; /* server®s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof(serveraddr));

serveraddr.sin_family = AF_INET;

serveraddr.sin_port = htons((unsigned short)port);

serveraddr.sin_addr.s_addr = htonl (INADDR_ANY);

m IP addr and port stored in network (big-endian) byte order

sin_port sin_addr

AF_INET INADD‘R_ANY O|l0|0|0O0|0O0|0O0]|]0O0]O0

sa family

Carnegie Mellon

Echo Server: open_listenfd

(bind)

m bind associates the socket with the socket address we just
created

int listenfd; /* listening socket */

struct sockaddr_in serveraddr; /* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */
iIT (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
return -1;

Carnegie Mellon

Echo Server: open_listenfd
(listen)
m l1sten indicates that this socket will accept connection

(connect) requests from clients

m LISTENQ is constant indicating how many pending requests
allowed

int listenfd; /* listening socket */

/* Make 1t a listening socket ready to accept connection requests */
IT (listen(listenfd, LISTENQ) < 0)
return -1;
return listenfd;

}

m We're finally ready to enter the main server loop that
accepts and processes client connection requests.

Carnegie Mellon

Echo Server: Main Loop

m The server loops endlessly, waiting for connection
requests, then reading input from the client, and echoing
the input back to the client.

main() {

/* create and configure the listening socket */

while(1l) {
/* Accept(): wait for a connection request */
/* echo(): read and echo input lines from client til EOF */
/* Close(): close the connection */

}

}

Overview of the Sockets Interface

Client Server
N
(socket socket
bind > open_listenfd
open_clientfd < l
listen
Connection l /
request
\ connect [------------- > accept <
\4 \4
Client / » rio_writen »rio_readlinebi«
Server ! ! . .
Session _ i : : Await connection
rio_readlineb |« rio_writen request from
next client
\4 \4
close [----- EOF_____ »rio_readlineb
\ 4
close

Echo Server: accept

m accept() blocks waiting for a connection request

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr _in clientaddr;

int clientlen;

clientlen = sizeof(clientaddr);
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

m acceptreturns a connected descriptor (connfd) with
the same properties as the listening descriptor
(Iistenfd)

m Returns when the connection between client and server is created
and ready for I/O transfers

m All I/0 with the client will be done via the connected socket

m accept alsofillsin client’s IP address

Carnegie Mellon

Echo Server: accept lllustrated

listenfd(3)

1. Server blocks in accept,
Client Server waiting for connection request
clientfd on listening descriptor
listenfd
Connection

listenfd(3)
request | > 2. Client makes connection request by
Client i T Server calling and blocking in connect

clientfd
listenfd(3)
3. Server returns connftd from
Client L) R I Server accept. Client returns from connect.
clientfd connfd(4) Connection is now established between

clientfd and connfd

Carnegie Mellon

Connected vs. Listening Descriptors

m Listening descriptor
" End point for client connection requests
" Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?

= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to
handle the request

Carnegie Mellon

Echo Server: Identifying the Client

m The server can determine the domain name and IP
address of the client

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal string */

hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_ addr,
sizeof(clientaddr.sin_addr.s _addr), AF _INET);

haddrp = i1net_ntoa(clientaddr.sin_addr);

printf("'server connected to %s (%s)\n", hp->h_name, haddrp);

Echo Server: echo

m The server uses RIO to read and echo text lines until EOF
(end-of-file) is encountered.
= EOF notification caused by client calling close(clientfd)
= |[MPORTANT: EOF is a condition, not a particular data byte

void echo(int connfd)
{ -
size_t n;
char buf[MAXLINE];
rio_t rio;

Rio_readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) = 0) {
upper_case(buf);
Rio _writen(connfd, buf, n);
printf('server received %d bytes\n', n);

Carnegie Mellon

Testing Servers Using telnet

m The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
® Qur simple echo server
= Web servers

" Mail servers

m Usage:
= unix> telnet <host> <portnumber>

= Creates a connection with a server running on <host> and
listening on port <portnumber>

Testing the Echo Server With telnet

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 5 bytes: 123

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 8 bytes: 456789

kittyhawk> telnet bass 5000
Trying 128.2.222.85. ..

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character i1s "]".

123

123

Connection closed by foreign host.
kittyhawk> telnet bass 5000
Trying 128.2.222.85. ..

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character i1s "]".

456789

456789

Connection closed by foreign host.
kittyhawk>

Carnegie Mellon

Packet Sniffing

m Program That Records Network Traffic Visible at Node

" Promiscuous Mode

= Record traffic that does not have this host as source or
destination

Z} Residence Hall Guidelines - Microsoft Internet Explorer Ol =|
File Edit “iew Favortes Toolz Help | -
e Back - O - \iLI |EL| ‘_;_\J | /Fj Search *3:1'(" Favorites {‘}‘ - H?_ ﬁl - —J ﬁ ﬁ
Address |:§"| hittp: A Avavava criu. edudcomputing documentationSpolicies_reshallfreshall. html#network j Go | Links **
Google - | || B8 Searchiweb - | gl | TaeeFenk B q blocked M Auicfil |] Options o9 |-@ -
TTEm = DT o P T T = T T ToT e T T T e T LT e T L Cr e = e o S T T T = o= T T T O T e T o =

RedHat Linux. As such, system administration problems are reduced and a rich suite of
applications and serwvices become available with no installation requirements on the part
af the user. For mare information on Andrew Linu=, please contact the Computing
Services Help Center at 268-HELP or send mail to adivisor+@andrew.cmu.edu.

Network Traffic

Fesidence hall and dedicated remote access service connections to the campus
network, and to the Internet, are provided to allow students, staff and faculty to fully
participate in the educational and research missions of Carnegie Mellon University. In

A

kel T T (e intemet

Carnegie Mellon

For More Information

m W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI”, Volume 1, Second
Edition, Prentice Hall, 1998

" THE network programming bible

m Unix Man Pages

" Good for detailed information about specific functions

m Complete versions of the echo client and server are
developed in the text
= Available from csapp.cs.cmu.edu

" You should compile and run them for yourselves to see how they
work

= Feel free to borrow any of this code

