
Carnegie Mellon

Introduction to Computer Systems
15-213, fall 2009
26th Lecture, Nov. 25th

Instructors:

Majd Sakr and Khaled Harras

Carnegie Mellon

Today

� Threads: basics

� Synchronization

� Races, deadlocks, thread safety

Carnegie Mellon

Process: Traditional View

� Process = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
Data registers

Condition codes

Stack pointer (SP)

Program counter

(PC)

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

Kernel context:
VM structures

Descriptor table

brk pointer

Carnegie Mellon

Process: Alternative View

� Process = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write data

Program context:
Data registers

Condition codes

Stack pointer (SP)

Program counter

(PC)

Code, data, and kernel context

read-only code/data

stack
SP

PC

brk

Thread

Kernel context:
VM structures

Descriptor table

brk pointer

Carnegie Mellon

Process with Two Threads

shared libraries

run-time heap

0

read/write data

Program context:
Data registers

Condition codes

Stack pointer (SP)

Program counter

(PC)

Code, data, and kernel context

read-only code/data
stack

SP PC

brk

Thread 1

Kernel context:
VM structures

Descriptor table

brk pointer

Program context:
Data registers

Condition codes

Stack pointer (SP)

Program counter

(PC)
stack

SP

Thread 2

Carnegie Mellon

Threads vs. Processes

� Threads and processes: similarities

� Each has its own logical control flow

� Each can run concurrently with others

� Each is context switched (scheduled) by the kernel

� Threads and processes: differences

� Threads share code and data, processes (typically) do not

� Threads are much less expensive than processes

� Process control (creating and reaping) is more expensive as
thread control

� Context switches for processes much more expensive than
for threads

Carnegie Mellon

Threads vs. Processes (contd.)

� Processes form a tree hierarchy

� Threads form a pool of peers

� Each thread can kill any other

� Each thread can wait for any other thread to terminate

� Main thread: first thread to run in a process

P0

P1

sh sh sh

foo

T1

Process hierarchy Thread pool

T2
T4

T5 T3

shared code, data
and kernel context

Carnegie Mellon

Posix Threads (Pthreads) Interface

� Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs

� Threads run thread routines:

� void *threadroutine(void *vargp)

� Creating and reaping threads

� pthread_create(pthread_t *tid, …, func *f, void *arg)

� pthread_join(pthread_t tid, void **thread_return)

� Determining your thread ID

� pthread_self()

� Terminating threads

� pthread_cancel(pthread_t tid)

� pthread_exit(void *tread_return)

� return (in primary thread routine terminates the thread)

� exit() (terminates all threads)

� Synchronizing access to shared variables

Carnegie Mellon

The Pthreads “Hello, world"
Program
/*

* hello.c - Pthreads "hello, world" program

*/

#include "csapp.h"

void *thread(void *vargp);

int main() {

pthread_t tid;

Pthread_create(&tid, NULL, thread, NULL);

Pthread_join(tid, NULL);

exit(0);

}

/* thread routine */

void *thread(void *vargp) {

printf("Hello, world!\n");

return NULL;

}

Thread attributes

(usually NULL)

Thread arguments

(void *p)

assigns return value

(void **p)

Carnegie Mellon

Detaching Threads

� Thread-based servers:
Use “detached” threads to avoid memory leaks
� At any point in time, a thread is either joinable or detached

� Joinable thread can be reaped and killed by other threads

� must be reaped (with pthread_join) to free memory

resources

� Detached thread cannot be reaped or killed by other threads

� resources are automatically reaped on termination

� Default state is joinable

� use pthread_detach(pthread_self()) to make detached

� Must be careful to avoid unintended sharing
� For example, what happens if we pass the address of connfd to the

thread routine?

� Pthread_create(&tid, NULL, thread,

(void *)&connfd);

Carnegie Mellon

Pros and Cons of Thread-Based
Designs

� + Easy to share data structures between threads

� e.g., logging information, file cache

� + Threads are more efficient than processes

� – Unintentional sharing can introduce subtle and
hard-to-reproduce errors!

� The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

Carnegie Mellon

Today

� Threads: basics

� Synchronization

� Races, deadlocks, thread safety

Carnegie Mellon

Shared Variables in Threaded C
Programs

� Question: Which variables in a threaded C program
are shared variables?

� The answer is not as simple as “global variables are shared” and
“stack variables are private”

� Requires answers to the following questions:

� What is the memory model for threads?

� How are variables mapped to each memory instance?

� How many threads might reference each of these instances?

Carnegie Mellon

Threads Memory Model

� Conceptual model:

� Multiple threads run within the context of a single process

� Each thread has its own separate thread context

� Thread ID, stack, stack pointer, program counter, condition codes, and

general purpose registers

� All threads share the remaining process context

� Code, data, heap, and shared library segments of the process virtual

address space

� Open files and installed handlers

� Operationally, this model is not strictly enforced:

� Register values are truly separate and protected, but

� Any thread can read and write the stack of any other thread

� Mismatch between the conceptual and operation
model
is a source of confusion and errors

Carnegie Mellon

Thread Accessing Another Thread’s
Stack
char **ptr; /* global */

int main()

{

int i;

pthread_t tid;

char *msgs[2] = {

"Hello from foo",

"Hello from bar"

};

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL,

thread,

(void *)i);

Pthread_exit(NULL);

}

/* thread routine */

void *thread(void *vargp)

{

int myid = (int) vargp;

static int svar = 0;

printf("[%d]: %s (svar=%d)\n",

myid, ptr[myid], ++svar);

}

Peer threads access main thread’s stack
indirectly through global ptr variable

Carnegie Mellon

Mapping Variables to Memory Instances

char **ptr; /* global */

int main()

{

int i;

pthread_t tid;

char *msgs[2] = {

"Hello from foo",

"Hello from bar"

};

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL,

thread,

(void *)i);

Pthread_exit(NULL);

}

/* thread routine */

void *thread(void *vargp)

{

int myid = (int)vargp;

static int svar = 0;

printf("[%d]: %s (svar=%d)\n",

myid, ptr[myid], ++svar);

}

Global var: 1 instance (ptr [data])

Local static var: 1 instance (svar [data])

Local vars: 1 instance (i.m, msgs.m)

Local var: 2 instances (
myid.p0 [peer thread 0’s stack],
myid.p1 [peer thread 1’s stack]

)

Carnegie Mellon

Shared Variable Analysis

� Which variables are shared?

� Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

� ptr, svar, and msgs are shared

� i and myid are not shared

Variable Referenced by Referenced by Referenced by

instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes

svar no yes yes

i.m yes no no

msgs.m yes yes yes

myid.p0 no yes no

myid.p1 no no yes

Carnegie Mellon

badcnt.c: Improper Synchronization

/* shared */

volatile unsigned int cnt = 0;

#define NITERS 100000000

int main() {

pthread_t tid1, tid2;

Pthread_create(&tid1, NULL,

count, NULL);

Pthread_create(&tid2, NULL,

count, NULL);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

if (cnt != (unsigned)NITERS*2)

printf("BOOM! cnt=%d\n",

cnt);

else

printf("OK cnt=%d\n",

cnt);

}

/* thread routine */

void *count(void *arg) {

int i;

for (i=0; i<NITERS; i++)

cnt++;

return NULL;

}

linux> ./badcnt

BOOM! cnt=198841183

linux> ./badcnt

BOOM! cnt=198261801

linux> ./badcnt

BOOM! cnt=198269672

cnt should be

equal to 200,000,000.

What went wrong?

Carnegie Mellon

Assembly Code for Counter Loop

.L9:

movl -4(%ebp),%eax

cmpl $99999999,%eax

jle .L12

jmp .L10

.L12:

movl cnt,%eax # Load

leal 1(%eax),%edx # Update

movl %edx,cnt # Store

.L11:

movl -4(%ebp),%eax

leal 1(%eax),%edx

movl %edx,-4(%ebp)

jmp .L9

.L10:

Corresponding assembly code

for (i=0; i<NITERS; i++)

cnt++;

C code for counter loop in
thread i

Head (Hi)

Tail (Ti)

Load cnt (Li)
Update cnt (Ui)

Store cnt (Si)

Carnegie Mellon

Concurrent Execution

� Key idea: In general, any sequentially consistent
interleaving is possible, but some give an
unexpected result!
� Ii denotes that thread i executes instruction I

� %eaxi is the content of %eax in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%eax1

OK

-
-
-
-
-
1
2
2
2
-

%eax2

Carnegie Mellon

Concurrent Execution (cont)

� Incorrect ordering: two threads increment the
counter, but the result is 1 instead of 2

H1

L1

U1

H2

L2

S1

T1

U2

S2

T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%eax1

-
-
-
-
0
-
-
1
1
1

%eax2

Oops!

Carnegie Mellon

Concurrent Execution (cont)

� How about this ordering?

� We can analyze the behaviour using a process
graph

H1

L1

H2

L2

U2

S2

U1

S1

T1

T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%eax1 %eax2

Carnegie Mellon

Progress Graphs

A progress graph depicts
the discrete execution
state space of concurrent

threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2.

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Carnegie Mellon

Trajectories in Progress Graphs

A trajectory is a sequence
of legal state transitions
that describes one possible
concurrent execution of

the threads.

Example:

H1, L1, U1, H2, L2,
S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

Critical Sections and Unsafe
Regions

L, U, and S form a
critical section with

respect to the shared
variable cnt

Instructions in critical

sections (wrt to some
shared variable) should
not be interleaved

Sets of states where such

interleaving occurs
form unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
sectio
n wrt
cnt

Unsafe region

Carnegie Mellon

Critical Sections and Unsafe
Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
sectio
n wrt
cnt

Unsafe region

Definition: A trajectory is saf
iff it does not enter any unsa
region

Claim: A trajectory is
correct (wrt cnt) iff it is

safe

unsafe

safe

Carnegie Mellon

Semaphores

� Question: How can we guarantee a safe trajectory?
� We must synchronize the threads so that they never enter an

unsafe state.

� Classic solution: Dijkstra's P and V operations on
semaphores
� Semaphore: non-negative global integer synchronization variable

� P(s): [while (s == 0) wait(); s--;]

– Dutch for "Proberen" (test)

� V(s): [s++;]

– Dutch for "Verhogen" (increment)

� OS guarantees that operations between brackets [] are executed
indivisibly

� Only one P or V operation at a time can modify s.

� When while loop in P terminates, only that P can decrement
s

Carnegie Mellon

badcnt.c: Improper Synchronization

/* shared */

volatile unsigned int cnt = 0;

#define NITERS 100000000

int main() {

pthread_t tid1, tid2;

Pthread_create(&tid1, NULL,

count, NULL);

Pthread_create(&tid2, NULL,

count, NULL);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

if (cnt != (unsigned)NITERS*2)

printf("BOOM! cnt=%d\n",

cnt);

else

printf("OK cnt=%d\n",

cnt);

}

/* thread routine */

void *count(void *arg) {

int i;

for (i=0; i<NITERS; i++)

cnt++;

return NULL;

}

How to fix using semaphores?

Carnegie Mellon

Safe Sharing with Semaphores
� One semaphore per shared variable

� Initially set to 1

� Here is how we would use P and V operations to
synchronize the threads that update cnt

/* Semaphore s is initially 1 */

/* Thread routine */

void *count(void *arg)

{

int i;

for (i=0; i<NITERS; i++) {

P(s);

cnt++;

V(s);

}

return NULL;

}

Carnegie Mellon

Unsafe region

Safe Sharing With Semaphores

Provide mutually

exclusive access to
shared variable by
surrounding critical
section with P and V

operations on semaphore
s (initially set to 1)

Semaphore invariant
creates a forbidden region

that encloses unsafe
region and is entered by
any trajectory

H1 P(s) V(s) T1

Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0
-1 -1 -1 -1

0 0

0 0

-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region

Carnegie Mellon

Wrappers on POSIX Semaphores

/* Initialize semaphore sem to value */

/* pshared=0 if thread, pshared=1 if process */

void Sem_init(sem_t *sem, int pshared, unsigned int value) {

if (sem_init(sem, pshared, value) < 0)

unix_error("Sem_init");

}

/* P operation on semaphore sem */

void P(sem_t *sem) {

if (sem_wait(sem))

unix_error("P");

}

/* V operation on semaphore sem */

void V(sem_t *sem) {

if (sem_post(sem))

unix_error("V");

}

Carnegie Mellon

Sharing With POSIX Semaphores
/* properly sync’d counter program */

#include "csapp.h"

#define NITERS 10000000

volatile unsigned int cnt;

sem_t sem; /* semaphore */

int main() {

pthread_t tid1, tid2;

Sem_init(&sem, 0, 1); /* sem=1 */

/* create 2 threads and wait */

...

if (cnt != (unsigned)NITERS*2)

printf("BOOM! cnt=%d\n", cnt);

else

printf("OK cnt=%d\n", cnt);

exit(0);

}

/* thread routine */

void *count(void *arg)

{

int i;

for (i=0; i<NITERS; i++) {

P(&sem);

cnt++;

V(&sem);

}

return NULL;

}

Warning:
It’s really slow!

Carnegie Mellon

Today

� Threads: basics

� Synchronization

� Races, deadlocks, thread safety

Carnegie Mellon

One worry: races

� A race occurs when correctness of the program depends
on one thread reaching point x before another thread
reaches point y
/* a threaded program with a race */

int main() {

pthread_t tid[N];

int i;

for (i = 0; i < N; i++)

Pthread_create(&tid[i], NULL, thread, &i);

for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);

exit(0);

}

/* thread routine */

void *thread(void *vargp) {

int myid = *((int *)vargp);

printf("Hello from thread %d\n", myid);

return NULL;

}

Carnegie Mellon

Race Elimination

� Make sure don’t have unintended sharing of state

/* a threaded program with a race */

int main() {

pthread_t tid[N];

int i;

for (i = 0; i < N; i++) {

int *valp = malloc(sizeof(int));

*valp = i;

Pthread_create(&tid[i], NULL, thread, valp);

for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);

exit(0);

}

/* thread routine */

void *thread(void *vargp) {

int myid = *((int *)vargp);

free(vargp);

printf("Hello from thread %d\n", myid);

return NULL;

}

Carnegie Mellon

Another worry: Deadlock

� Processes wait for condition that will never be true

� Typical Scenario

� Processes 1 and 2 needs two resources (A and B) to proceed

� Process 1 acquires A, waits for B

� Process 2 acquires B, waits for A

� Both will wait forever!

Carnegie Mellon

Deadlocking With POSIX
Semaphoresint main()

{

pthread_t tid[2];

Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */

Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */

Pthread_create(&tid[0], NULL, count, (void*) 0);

Pthread_create(&tid[1], NULL, count, (void*) 1);

Pthread_join(tid[0], NULL);

Pthread_join(tid[1], NULL);

printf("cnt=%d\n", cnt);

exit(0);

}

void *count(void *vargp)

{

int i;

int id = (int) vargp;

for (i = 0; i < NITERS; i++) {

P(&mutex[id]); P(&mutex[1-id]);

cnt++;

V(&mutex[id]); V(&mutex[1-id]);

}

return NULL;

}

Tid[0]

:
P(s0);
P(s1);
cnt++
;

V(s0);
V(s1);

Tid[1]

:
P(s1);
P(s0);
cnt++
;

V(s1);
V(s0);

Carnegie Mellon

Deadlock Visualized in Progress
Graph

Locking introduces the

potential for deadlock:
waiting for a condition that
will never be true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for

either s0 or s1 to become

nonzero

Other trajectories luck out

and skirt the deadlock
region

Unfortunate fact: deadlock
is often non-deterministic

Thread 1

Thread 2

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s0)

P(s1)

V(s0)
Forbidden region
for s1

Forbidden region

for s2

deadlock
state

deadlock
region

s0=s1=1

Carnegie Mellon

Avoiding Deadlock
int main()

{

pthread_t tid[2];

Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */

Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */

Pthread_create(&tid[0], NULL, count, (void*) 0);

Pthread_create(&tid[1], NULL, count, (void*) 1);

Pthread_join(tid[0], NULL);

Pthread_join(tid[1], NULL);

printf("cnt=%d\n", cnt);

exit(0);

}

void *count(void *vargp)

{

int i;

int id = (int) vargp;

for (i = 0; i < NITERS; i++) {

P(&mutex[0]); P(&mutex[1]);

cnt++;

V(&mutex[id]); V(&mutex[1-id]);

}

return NULL;

}

Tid[0]

:
P(s0)
;
P(s1)
;

cnt++
;
V(s0)

Tid[1]

:
P(s0)
;
P(s1)
;

cnt++
;
V(s1)

Acquire shared resources in same order

Carnegie Mellon

Avoided Deadlock in Progress
Graph

Thread 1

Thread 2

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s1)

P(s0)

V(s0)
Forbidden region
for s1

Forbidden region

for s2

s0=s1=1

No way for trajectory to
get stuck

Processes acquire locks
in same order

Order in which locks
released immaterial

Carnegie Mellon

Crucial concept: Thread Safety

� Functions called from a thread (without external
synchronization) must be thread-safe

� Meaning: it must always produce correct results when called
repeatedly from multiple concurrent threads

� Some examples of thread-unsafe functions:

� Failing to protect shared variables

� Relying on persistent state across invocations

� Returning a pointer to a static variable

� Calling thread-unsafe functions

Carnegie Mellon

Thread-Unsafe Functions
(Class 1)

� Failing to protect shared variables

� Fix: Use P and V semaphore operations

� Example: goodcnt.c

� Issue: Synchronization operations will slow down code

� e.g., badcnt requires 0.5s, goodcnt requires 7.9s

Carnegie Mellon

Thread-Unsafe Functions (Class
2)

� Relying on persistent state across multiple function
invocations

� Example: Random number generator (RNG) that relies on static
state

/* rand: return pseudo-random integer on 0..32767 */

static unsigned int next = 1;

int rand(void)

{

next = next*1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed)

{

next = seed;

}

Carnegie Mellon

Making Thread-Safe RNG

� Pass state as part of argument

� and, thereby, eliminate static state

� Consequence: programmer using rand must maintain
seed

/* rand - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)

{

*nextp = *nextp*1103515245 + 12345;

return (unsigned int)(*nextp/65536) % 32768;

}

Carnegie Mellon

Thread-Unsafe Functions (Class
3)

� Returning a ptr to a
static variable

� Fixes:

� 1. Rewrite code so caller
passes pointer to struct

– Issue: Requires
changes in caller and
callee

� 2. Lock-and-copy

– Issue: Requires only
simple changes in caller
(and none in callee)

– However, caller must
free memory

hostp = Malloc(...);

gethostbyname_r(name, hostp);

struct hostent

*gethostbyname(char name)

{

static struct hostent h;

<contact DNS and fill in h>

return &h;

}

struct hostent

*gethostbyname_ts(char *name)

{

struct hostent *q = Malloc(...);

struct hostent *p;

P(&mutex); /* lock */

p = gethostbyname(name);

*q = *p; /* copy */

V(&mutex);

return q;

}

Carnegie Mellon

Thread-Unsafe Functions
(Class 4)

� Calling thread-unsafe functions

� Calling one thread-unsafe function makes the entire function that
calls it thread-unsafe

� Fix: Modify the function so it calls only thread-safe functions ☺

Carnegie Mellon

Thread-Safe Library Functions

� All functions in the Standard C Library (at the back
of your K&R text) are thread-safe
� Examples: malloc, free, printf, scanf

� Most Unix system calls are thread-safe, with a few
exceptions:

Thread-unsafe function Class Reentrant version

asctime 3 asctime_r

ctime 3 ctime_r

gethostbyaddr 3 gethostbyaddr_r

gethostbyname 3 gethostbyname_r

inet_ntoa 3 (none)

localtime 3 localtime_r

rand 2 rand_r

Carnegie Mellon

Notifying With Semaphores

� Common synchronization pattern:
� Producer waits for slot, inserts item in buffer, and notifies consumer

� Consumer waits for item, removes it from buffer, and notifies
producer

� Examples
� Multimedia processing:

� Producer creates MPEG video frames, consumer renders them

� Event-driven graphical user interfaces

� Producer detects mouse clicks, mouse movements, and keyboard
hits and inserts corresponding events in buffer

� Consumer retrieves events from buffer and paints the display

producer

thread

shared
buffer

consumer

thread

Carnegie Mellon

Producer-Consumer on a Buffer
That Holds One Item
/* buf1.c - producer-consumer

on 1-element buffer */

#include “csapp.h”

#define NITERS 5

void *producer(void *arg);

void *consumer(void *arg);

struct {

int buf; /* shared var */

sem_t full; /* sems */

sem_t empty;

} shared;

int main() {

pthread_t tid_producer;

pthread_t tid_consumer;

/* initialize the semaphores */

Sem_init(&shared.empty, 0, 1);

Sem_init(&shared.full, 0, 0);

/* create threads and wait */

Pthread_create(&tid_producer, NULL,

producer, NULL);

Pthread_create(&tid_consumer, NULL,

consumer, NULL);

Pthread_join(tid_producer, NULL);

Pthread_join(tid_consumer, NULL);

exit(0);

}

Carnegie Mellon

Producer-Consumer (cont)

/* producer thread */

void *producer(void *arg) {

int i, item;

for (i=0; i<NITERS; i++) {

/* produce item */

item = i;

printf("produced %d\n",

item);

/* write item to buf */

P(&shared.empty);

shared.buf = item;

V(&shared.full);

}

return NULL;

}

/* consumer thread */

void *consumer(void *arg) {

int i, item;

for (i=0; i<NITERS; i++) {

/* read item from buf */

P(&shared.full);

item = shared.buf;

V(&shared.empty);

/* consume item */

printf("consumed %d\n“, item);

}

return NULL;

}

Initially: empty = 1, full = 0

Carnegie Mellon

Counting with Semaphores

� Remember, it’s a non-negative integer

� So, values greater than 1 are legal

� Lets repeat thing_5() 5 times for every 3 of thing_3()

/* thing_5 and thing_3 */

#include “csapp.h”

sem_t five;

sem_t three;

void *five_times(void *arg);

void *three_times(void *arg);

int main() {

pthread_t tid_five, tid_three;

/* initialize the semaphores */

Sem_init(&five, 0, 5);

Sem_init(&three, 0, 3);

/* create threads and wait */

Pthread_create(&tid_five, NULL,

five_times, NULL);

Pthread_create(&tid_three, NULL,

three_times, NULL);

.

.

.

}

Carnegie Mellon

Counting with semaphores (cont)

/* thing_5() thread */

void *five_times(void *arg) {

int i;

while (1) {

for (i=0; i<5; i++) {

/* wait & thing_5() */

P(&five);

thing_5();

}

V(&three);

V(&three);

V(&three);

}

return NULL;

}

/* thing_3() thread */

void *three_times(void *arg) {

int i;

while (1) {

for (i=0; i<3; i++) {

/* wait & thing_3() */

P(&three);

thing_3();

}

V(&five);

V(&five);

V(&five);

V(&five);

V(&five);

}

return NULL;

}

Initially: five = 5, three = 3

Carnegie Mellon

Threads Summary

� Threads provide another mechanism for writing
concurrent programs

� Threads are growing in popularity

� Somewhat cheaper than processes

� Easy to share data between threads

� However, the ease of sharing has a cost:

� Easy to introduce subtle synchronization errors

� Tread carefully with threads!

� For more info:

� D. Butenhof, “Programming with Posix Threads”, Addison-
Wesley, 1997

Carnegie Mellon

Beware of Optimizing Compilers!

� Global variable cnt shared

between threads

� Multiple threads could be

trying to update within their

iterations

� Compiler moved access to
cnt out of loop

� Only shared accesses to cnt

occur before loop (read) or

after (write)

� What are possible program

outcomes?

#define NITERS 100000000

/* shared counter variable */

unsigned int cnt = 0;

/* thread routine */

void *count(void *arg)

{

int i;

for (i = 0; i < NITERS; i++)

cnt++;

return NULL;

}

Code From Book

movl cnt, %ecx

movl $99999999, %eax

.L6:

leal 1(%ecx), %edx

decl %eax

movl %edx, %ecx

jns .L6

movl %edx, cnt

Generated Code

Carnegie Mellon

Controlling Optimizing
Compilers!

� Declaring variable as volatile

forces it to be kept in memory

� Shared variable read and

written each iteration

#define NITERS 100000000

/* shared counter variable */

volatile unsigned int cnt = 0;

/* thread routine */

void *count(void *arg)

{

int i;

for (i = 0; i < NITERS; i++)

cnt++;

return NULL;

}

Revised Book Code

movl $99999999, %edx

.L15:

movl cnt, %eax

incl %eax

decl %edx

movl %eax, cnt

jns .L15

Generated Code

